skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


Title: Mode Clustering for Markov Jump Systems
In this work, we consider the problem of mode clustering in Markov jump models. This model class consists of multiple dynamical modes with a switching sequence that determines how the system switches between them over time. Under different active modes, the observations can have different characteristics. Given the observations only and without knowing the mode sequence, the goal is to cluster the modes based on their transition distributions in the Markov chain to find a reduced-rank Markov matrix that is embedded in the original Markov chain. Our approach involves mode sequence estimation, mode clustering and reduced-rank model estimation, where mode clustering is achieved by applying the singular value decomposition and k-means. We show that, under certain conditions, the clustering error can be bounded, and the reduced-rank Markov chain is a good approximation to the original Markov chain. Through simulations, we show the efficacy of our approach and the application of our approach to real world scenarios. Index Terms—Switched model, Markov chain, clustering  more » « less
Award ID(s):
1845076 1838179
PAR ID:
10137575
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE CAMSAP 2019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While Markov jump systems (MJSs) are more appropriate than LTI systems in terms of modeling abruptly changing dynamics, MJSs (and other switched systems) may suffer from the model complexity brought by the potentially sheer number of switching modes. Much of the existing work on reducing switched systems focuses on the state space where techniques such as discretization and dimension reduction are performed, yet reducing mode complexity receives few attention. In this work, inspired by clustering techniques from unsupervised learning, we propose a reduction method for MJS such that a mode-reduced MJS can be constructed with guaranteed approximation performance. Furthermore, we show how this reduced MJS can be used in designing controllers for the original MJS to reduce the computation cost while maintaining guaranteed suboptimality. Keywords: Markov Jump Systems, System Reduction, Clustering 
    more » « less
  2. While Markov jump systems (MJSs) are more appropriate than LTI systems in terms of modeling abruptly changing dynamics, MJSs (and other switched systems) may suffer from the model complexity brought by the potentially sheer number of switching modes. Much of the existing work on reducing switched systems focuses on the state space where techniques such as discretization and dimension reduction are performed, yet reducing mode complexity receives few attention. In this work, inspired by clustering techniques from unsupervised learning, we propose a reduction method for MJS such that a mode-reduced MJS can be constructed with guaranteed approximation performance. Furthermore, we show how this reduced MJS can be used in designing controllers for the original MJS to reduce the computation cost while maintaining guaranteed suboptimality. 
    more » « less
  3. While Markov jump systems (MJSs) are more appropriate than LTI systems in terms of modeling abruptly changing dynamics, MJSs (and other switched systems) may suffer from the model complexity brought by the potentially sheer number of switching modes. Much of the existing work on reducing switched systems focuses on the state space where techniques such as discretization and dimension reduction are performed, yet reducing mode complexity receives few attention. In this work, inspired by clustering techniques from unsupervised learning, we propose a reduction method for MJS such that a mode-reduced MJS can be constructed with guaranteed approximation performance. Furthermore, we show how this reduced MJS can be used in designing controllers for the original MJS to reduce the computation cost while maintaining guaranteed suboptimality. 
    more » « less
  4. In this paper, we study the “decoding” problem for discrete-time, stochastic hybrid systems with linear dynamics in each mode. Given an output trace of the system, the decoding problem seeks to construct a sequence of modes and states that yield a trace “as close as possible” to the original output trace. The decoding problem generalizes the state estimation problem, and is applicable to hybrid systems with non-determinism. The decoding problem is NP-complete, and can be reduced to solving a mixed-integer linear program (MILP). In this paper, we decompose the decoding problem into two parts: (a) finding a sequence of discrete modes and transitions; and (b) finding corresponding continuous states for the mode/transition sequence. In particular, once a sequence of modes/transitions is fixed, the problem of “filling in” the continuous states is performed by a linear programming problem. In order to support the decomposition, we “cover” the set of all possible mode/transition sequences by a finite subset. We use well-known probabilistic arguments to justify a choice of cover with high confidence and design randomized algorithms for finding such covers. Our approach is demonstrated on a series of benchmarks, wherein we observe that relatively tiny fraction of the possible mode/transition sequences can be used as a cover. Furthermore, we show that the resulting linear programs can be solved rapidly by exploiting the tree structure of the set cover. 
    more » « less
  5. In this paper, we analyze the monotonicity of infor-mation aging in a remote estimation system, where historical observations of a Gaussian autoregressive AR(p) process are used to predict its future values. We consider two widely used loss functions in estimation: (i) logarithmic loss function for maximum likelihood estimation and (ii) quadratic loss function for MMSE estimation. The estimation error of the AR(p) process is written as a generalized conditional entropy which has closed-form expressions. By using a new information-theoretic tool called ϵ -Markov chain, we can evaluate the divergence of the AR(p) process from being a Markov chain. When the divergence ϵ is large, the estimation error of the AR(p) process can be far from a non-decreasing function of the Age of Information (AoI). Conversely, for small divergence ϵ, the estimation error is close to a non-decreasing AoI function. Each observation is a short sequence taken from the AR(p) process. As the observation sequence length increases, the parameter ϵ progressively reduces to zero, and hence the estimation error becomes a non -decreasing AoI function. These results underscore a connection between the monotonicity of information aging and the divergence of from being a Markov chain. 
    more » « less