A small-scale rolling-pendulum (RP) isolation system with gap restrainers was tested under swept-sine surveys (chirp) of varying amplitude. These tests were used to characterize the properties of the experimental small-scale floor isolation system (FIS) that was subsequently installed in a small-scale three-story primary structure (PS). The PS-FIS system was tested under four historic ground motions through shake table testing. These tests were used to assess the coupling between the FIS and the PS. Additionally, cyclic load-displacement tests were run to characterize the response of the shock absorbers used in the FIS. All the data from these experiments have been processed to quantify the performance and characteristics of the PS-FIS and its components, as documented in the data report and in Bin (2021).
more »
« less
Mitigation of Seismic Risk to Critical Building Contents via Rolling Pendulum Isolation Systems: Multi-Directional Hybrid Shake Table Tests
Participated in a research project that involved multi-directional shake table preparation for future characterization testing of the rolling pendulum floor isolation system to understand its performance. This involved performing kinematics validation of the shake table to develop the actuator control system that will be used in future tests. The results of the future characterization tests will be used in the first multi-directional real-time hybrid simulation test for the rolling pendulum floor isolation system in the Lehigh University ATLSS Engineering Research Center. The efforts done contribute to the earthquake engineering community.
more »
« less
- Award ID(s):
- 1929151
- PAR ID:
- 10349487
- Publisher / Repository:
- Designsafe-CI
- Date Published:
- Subject(s) / Keyword(s):
- rolling pendulum floor isolation system multi-directional shake table kinematics validation Fusion 360 ATLSS Engineering Research Center Lehigh University
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Seismic resiliency includes the ability to protect the contents of mission-critical buildings from becoming damaged. The contents include telecommunication and other types of electronic equipment in mission-critical data centres. One technique to protect sensitive equipment in buildings is the use of floor isolation systems (FIS). Multi-directional shake table real-time hybrid simulation (RTHS) is utilized in this paper to validate the performance of full-scale rolling pendulum (RP) bearings, incorporating multi-scale (building– FIS–equipment) interactions. The analytical substructure for the RTHS included 3D nonlinear models of the building and isolated equipment, while the experimental substructure was comprised of the FIS. The RTHS test setup consisted of the FIS positioned on a shake table, where it is coupled to the analytical substructure and subjected to multi-directional deformations caused by the building’s floor accelerations and equipment motion from an earthquake. Parametric studies were performed to assess the influence of different building lateral load systems on the performance of the FISs. The lateral load resisting systems included buildings with steel moment resisting frame (SMRF) systems and with buckling restrained braced frame (BRBF) systems. Each building type was subjected to multi-directional ground motions of different sources and hazard levels. Details of the experimental test setup, RTHS test protocol and main preliminary results on the multi-directional testing of an RP-based FIS are described. Challenges in conducting the multi-axial RTHS, including the nonlinear kinematics transformation, adaptive compensation for the actuator-table dynamics, along with the approaches used to overcome them are presented. The acceleration and deformation response of the isolated equipment is assessed to demonstrate the effectiveness of the FIS in mitigating the effects of multi-directional seismic loading on isolated equipment in mission-critical buildings.more » « less
-
Abstract Damage caused by earthquakes to buildings and their contents (e.g., sensitive equipment) can impact life safety and disrupt business operations following an event. Floor isolation systems (FISs) are a promising retrofit strategy for protecting vital building contents. In this study, real‐time hybrid simulation (RTHS) is utilized to experimentally incorporate multi‐scale (building–FIS–equipment) interactions. For this, an experimental setup representing one bearing of a rolling pendulum (RP) based FIS is studied—first through characterization tests and then through RTHS. A series of tests was conducted at the Natural Hazards Engineering Research Infrastructure (NHERI) Experimental Facility at Lehigh University. Multiple excitations were used to study the experimental setup under uni‐axial loading. Details of the experimental testbed and test protocols for the characterization and RTHS tests are presented, along with results from these tests, which focused on the effect of different rolling surface treatments for supplemental damping, the FIS–equipment and building–FIS interactions, and rigorous evaluation of different RP isolation bearing designs through RTHS.more » « less
-
null (Ed.)Floor isolation systems (FISs) are used to mitigate earthquake-induced damage to sensitive building contents and equipment. Traditionally, the isolated floor and the primary building structure (PS) are analyzed independently, assuming the PS response is uncoupled from the FIS response. Dynamic coupling may be non-negligible when nonlinearities are present under large deflections at strong disturbance levels. This study investigates a multi-functional FIS that functions primarily as an isolator (i.e., attenuating total acceleration sustained by the isolated equipment) at low-to-moderate disturbance levels, and then passively adapt under strong disturbances to function as a nonlinear (vibro-impact) dynamic vibration absorbers to protect the PS (i.e., reducing inter-story drifts). The FIS, therefore, functions as a dual-model vibration isolator/absorber system, with displacement dependent response adaptation. A scale experimental model—consisting of a three-story frame and an isolated mass—is used to demonstrate and evaluate the design methodology via shake table tests. The properties of the 3D-printed rolling pendulum (RP) bearing, the seismic gap, and the impact mechanism are optimized to achieve the desired dual-mode performance. A suite of four ground motions with varying spectral qualities are used, and their amplitudes are scaled to represent various hazards—from service level earthquake (SLE), to design basis earthquake (DBE), and even maximum considered earthquake (MCE). The performance of the multi-functional FIS is established and is described in this paper.more » « less
-
The Natural Hazards Engineering Research Infrastructure (NHERI) Converging Design project is a collaborative effort between multiple universities and industry entities with the goal of creating a new design paradigm in structural engineering that employs multi-objective optimization to maximize functional recovery while integrating sustainability principles in the design process. The structural design approaches were validated through full-scale shake table testing of a 6-story mass timber structure at the at the Englekirk Structural Engineering Center at University of California, San Diego (NHERI@UCSD) Large High-Performance Outdoor Shake Table (LHPOST6) facility for eventual inclusion in a multi-objective design optimization framework. The shake table testing included three phases. Phase one consisted of a mass timber self-centering rocking wall (SCRW) system with U-shaped flexural plates (UFPs) in both building horizontal directions. Phase two replaced the SCRWs in one principal direction with SCRWs with buckling restrained boundary elements (BRBs) at the first story. Phase three replaced the newer walls from phase two with a resilient steel moment frame and concentric braced-frame (MF/CBF). The data shared includes reports summarizing the testing program, structural drawings, instrumentation setups, and raw data for the series of shake table tests performed during each phase. The data include building responses due to shake table motions simulating scaled historical ground motions and white noise (WN) tests.more » « less
An official website of the United States government
