skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental Evaluation of the Performance of a Nonlinear Dual-Mode Vibration Isolator/Absorber System
Floor isolation systems (FISs) are used to mitigate earthquake-induced damage to sensitive building contents and equipment. Traditionally, the isolated floor and the primary building structure (PS) are analyzed independently, assuming the PS response is uncoupled from the FIS response. Dynamic coupling may be non-negligible when nonlinearities are present under large deflections at strong disturbance levels. This study investigates a multi-functional FIS that functions primarily as an isolator (i.e., attenuating total acceleration sustained by the isolated equipment) at low-to-moderate disturbance levels, and then passively adapt under strong disturbances to function as a nonlinear (vibro-impact) dynamic vibration absorbers to protect the PS (i.e., reducing inter-story drifts). The FIS, therefore, functions as a dual-model vibration isolator/absorber system, with displacement dependent response adaptation. A scale experimental model—consisting of a three-story frame and an isolated mass—is used to demonstrate and evaluate the design methodology via shake table tests. The properties of the 3D-printed rolling pendulum (RP) bearing, the seismic gap, and the impact mechanism are optimized to achieve the desired dual-mode performance. A suite of four ground motions with varying spectral qualities are used, and their amplitudes are scaled to represent various hazards—from service level earthquake (SLE), to design basis earthquake (DBE), and even maximum considered earthquake (MCE). The performance of the multi-functional FIS is established and is described in this paper.  more » « less
Award ID(s):
1663376
PAR ID:
10213536
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 2021 International Modal Analysis Conference XXXIX
Page Range / eLocation ID:
3 pp
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Floor isolation systems (FISs) are used to mitigate earthquake‐induced damage to sensitive building contents. Dynamic coupling between the FIS and primary structure (PS) may be nonnegligible or even advantageous when strong nonlinearities are present under large isolator displacements. This study investigates the influence of dynamic coupling between the PS and FIS in the presence of nonsmooth (impact‐like) nonlinearity in the FIS under intense earthquakes. Using component mode analysis, a nonlinear reduced order model of the combined FIS–PS system is developed by coupling a condensed model of the linear PS to the nonlinear FIS. A bilinear Hertz‐type contact model is assumed for the FIS, with the gap and the impact stiffness and damping providing parametric variation. The performance of the FIS–PS system is quantified through a multiobjective, risk‐based design criterion considering both the total acceleration sustained by the isolated mass under a service‐level earthquake and the interstory drift under a maximum considered earthquake. The results of a parametric study shed light on understanding the valid range that the decoupled approach can be reliably applied for nonlinear FISs experiencing impacts. It is also shown that the nonlinear FIS can be tuned in such a way to mitigate seismic responses of the supporting PS under strong shaking, in addition to protecting the isolated mass at low to moderate shaking. The FIS, therefore, functions as a dual‐mode vibration isolator/absorber system, with displacement‐dependent response adaptation. Guidelines to the optimal tuning of such a dual‐mode system are presented based on the risk‐based stochastic design optimization. 
    more » « less
  2. Seismic resiliency includes the ability to protect the contents of mission-critical buildings from becoming damaged. The contents include telecommunication and other types of electronic equipment in mission-critical data centres. One technique to protect sensitive equipment in buildings is the use of floor isolation systems (FIS). Multi-directional shake table real-time hybrid simulation (RTHS) is utilized in this paper to validate the performance of full-scale rolling pendulum (RP) bearings, incorporating multi-scale (building– FIS–equipment) interactions. The analytical substructure for the RTHS included 3D nonlinear models of the building and isolated equipment, while the experimental substructure was comprised of the FIS. The RTHS test setup consisted of the FIS positioned on a shake table, where it is coupled to the analytical substructure and subjected to multi-directional deformations caused by the building’s floor accelerations and equipment motion from an earthquake. Parametric studies were performed to assess the influence of different building lateral load systems on the performance of the FISs. The lateral load resisting systems included buildings with steel moment resisting frame (SMRF) systems and with buckling restrained braced frame (BRBF) systems. Each building type was subjected to multi-directional ground motions of different sources and hazard levels. Details of the experimental test setup, RTHS test protocol and main preliminary results on the multi-directional testing of an RP-based FIS are described. Challenges in conducting the multi-axial RTHS, including the nonlinear kinematics transformation, adaptive compensation for the actuator-table dynamics, along with the approaches used to overcome them are presented. The acceleration and deformation response of the isolated equipment is assessed to demonstrate the effectiveness of the FIS in mitigating the effects of multi-directional seismic loading on isolated equipment in mission-critical buildings. 
    more » « less
  3. A small-scale rolling-pendulum (RP) isolation system with gap restrainers was tested under swept-sine surveys (chirp) of varying amplitude. These tests were used to characterize the properties of the experimental small-scale floor isolation system (FIS) that was subsequently installed in a small-scale three-story primary structure (PS). The PS-FIS system was tested under four historic ground motions through shake table testing. These tests were used to assess the coupling between the FIS and the PS. Additionally, cyclic load-displacement tests were run to characterize the response of the shock absorbers used in the FIS. All the data from these experiments have been processed to quantify the performance and characteristics of the PS-FIS and its components, as documented in the data report and in Bin (2021). 
    more » « less
  4. Protecting both the essential building contents and the structural system—as well as facilitating and accelerating the post-event functionality of business operations—is a major concern during natural hazards. Floor isolation systems (FIS) with rolling pendulum bearings along with nonlinear fluid viscous dampers (NFVD) have been proposed to mitigate damage and enhance the resiliency of non-structural and structural systems, respectively. These devices are designed to decrease vibrations under dynamic loading conditions. In this poster, we introduce research using tridimensional nonlinear cyber-physical experimental testing (i.e., real-time hybrid simulations) to validate the performance of these response modification devices placed in structural systems under wind and earthquake loading conditions. The effects of soil-structure-foundation and fluid-structure interactions were also accounted for. The novelty of the project is the use of multi-directional large-scale real-time hybrid simulations of complex nonlinear systems under wind and earthquake demands to combine experimental structural modification passive devices with analytical multi-story buildings considering soil-foundation interaction via neural network. Results show that the FIS and NFVD can significantly reduce the demand on non-structural and structural systems of buildings subjected to natural hazards whose response can be also significantly affected by soil-foundation-structure interaction. A product of this research is the data (which is linked in Related Works), which can be used to compare with new studies using the same experimental techniques and structural modification devices or with alternative approaches. Researchers interested in multi-natural hazards resilience and mitigation, state-of-the-art structural experimental techniques, and the use of machine learning as a tool to improve modeling efficiency will benefit from its results. Also, companies dedicated to the commercial development of structural response modification devices, as well as policymakers working or with interest in economic and social resilience. 
    more » « less
  5. A new friction device using band brake technology, termed the Banded Rotary Friction Damper (BRFD), has been fabricated at the NHERI Lehigh Experimental Facility. The damping mechanism is based on band brake technology and leverages a self-energizing mechanism to produce large damping forces with low input energy. The device is a second-generation BRFD, where the friction mechanism is achieved using two electric actuators. The BRFD generates a damping force as a function of the input force provided by the electric actuators, where the ratio of BRFD force output-to-electric actuator force input is equal to about 112. The paper presents the results of a study using real-time hybrid simulations (RTHS) to investigate the performance of the BRFD’s in mitigating seismic hazards of a two-story reinforced concrete building. The building has two and three special moment resisting frames (SMRFs) in the east-west and north-south directions, respectively. In order to perform the RTHS, the north south SMRF is considered and the BRFD along with a parallel elastic member is used as a base isolation system to mitigate the effects of earthquake hazards by reducing story drift and floor accelerations of the structure. For the RTHS the building and the elastic component of the isolator are part of the analytical substructure while the experimental substructure is comprised of the BRFD. The response of the structure is investigated involving six Maximum Considered Earthquake (MCE) hazard level events that includes three near-field and three far-field ground motions. The explicit, unconditionally stable dissipative Modified KR-α integration algorithm is used to accurately integrate the equations of motion during the RTHS. The model for the reinforced concrete building is created using explicit non-linear force-based fiber elements to discretely model each member of the structure. First, the details of the prototype of the BRFD are presented. Second, the details of the isolator system consisting of a linear spring element and the BRFD are discussed. Finally, the details of the RTHS study and the results are presented. The building’s inter-story peak and residual story drift from base-isolated and fixed-based conditions are compared. Results show that the proposed isolator system produces a significant reduction in both maximum inter-story drift and residual drift, and reduces the damage developed in the structure during the MCE. 
    more » « less