skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Internet searches and heat-related emergency department visits in the United States
Abstract Emerging research suggests that internet search patterns may provide timely, actionable insights into adverse health impacts from, and behavioral responses to, days of extreme heat, but few studies have evaluated this hypothesis, and none have done so across the United States. We used two-stage distributed lag nonlinear models to quantify the interrelationships between daily maximum ambient temperature, internet search activity as measured by Google Trends, and heat-related emergency department (ED) visits among adults with commercial health insurance in 30 US metropolitan areas during the warm seasons (May to September) from 2016 to 2019. Maximum daily temperature was positively associated with internet searches relevant to heat, and searches were in turn positively associated with heat-related ED visits. Moreover, models combining internet search activity and temperature had better predictive ability for heat-related ED visits compared to models with temperature alone. These results suggest that internet search patterns may be useful as a leading indicator of heat-related illness or stress.  more » « less
Award ID(s):
1735087
PAR ID:
10349549
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Alaskan wildfires have major ecological, social, and economic consequences, but associated health impacts remain unexplored. We estimated cardiorespiratory morbidity associated with wildfire smoke (WFS) fine particulate matter with a diameter less than 2.5 μm (PM2.5) in three major population centers (Anchorage, Fairbanks, and the Matanuska‐Susitna Valley) during the 2015–2019 wildfire seasons. To estimate WFS PM2.5, we utilized data from ground‐based monitors and satellite‐based smoke plume estimates. We implemented time‐stratified case‐crossover analyses with single and distributed lag models to estimate the effect of WFS PM2.5on cardiorespiratory emergency department (ED) visits. On the day of exposure to WFS PM2.5, there was an increased odds of asthma‐related ED visits among 15–65 year olds (OR = 1.12, 95% CI = 1.08, 1.16), people >65 years (OR = 1.15, 95% CI = 1.01, 1.31), among Alaska Native people (OR = 1.16, 95% CI = 1.09, 1.23), and in Anchorage (OR = 1.10, 95% CI = 1.05, 1.15) and Fairbanks (OR = 1.12, 95% CI = 1.07, 1.17). There was an increased risk of heart failure related ED visits for Alaska Native people (Lag Day 5 OR = 1.13, 95% CI = 1.02, 1.25). We found evidence that rural populations may delay seeking care. As the frequency and magnitude of Alaskan wildfires continue to increase due to climate change, understanding the health impacts will be imperative. A nuanced understanding of the effects of WFS on specific demographic and geographic groups facilitates data‐driven public health interventions and fire management protocols that address these adverse health effects. 
    more » « less
  2. Abstract Growing evidence indicates that extreme environmental conditions in summer months have an adverse impact on mental and behavioral disorders (MBD), but there is limited research looking at youth populations. The objective of this study was to apply machine learning approaches to identify key variables that predict MBD‐related emergency room (ER) visits in youths in select North Carolina cities among adolescent populations. Daily MBD‐related ER visits, which totaled over 42,000 records, were paired with daily environmental conditions, as well as sociodemographic variables to determine if certain conditions lead to higher vulnerability to exacerbated mental health disorders. Four machine learning models (i.e., generalized linear model, generalized additive model, extreme gradient boosting, random forest) were used to assess the predictive performance of multiple environmental and sociodemographic variables on MBD‐related ER visits for all cities. The best‐performing machine learning model was then applied to each of the six individual cities. As a subanalysis, a distributed lag nonlinear model was used to confirm results. In the all cities scenario, sociodemographic variables contributed the greatest to the overall MBD prediction. In the individual cities scenario, four cities had a 24‐hr difference in the maximum temperature, and two of the cities had a 24‐hr difference in the minimum temperature, maximum temperature, or Normalized Difference Vegetation Index as a leading predictor of MBD ER visits. Results can inform the use of machine learning models for predicting MBD during high‐temperature events and identify variables that affect youth MBD responses during these events. 
    more » « less
  3. null (Ed.)
    Abstract Background This scoping review summarized research on (a) seasonal differences in physical activity and sedentary behavior, and (b) specific weather indices associated with those behaviors. Methods PubMed, CINAHL, and SPORTDiscus were searched to identify relevant studies. After identifying and screening 1459 articles, data were extracted from 110 articles with 118,189 participants from 30 countries (almost exclusively high-income countries) on five continents. Results Both physical activity volume and moderate-to-vigorous physical activity (MVPA) were greater in summer than winter. Sedentary behavior was greater in winter than either spring or summer, and insufficient evidence existed to draw conclusions about seasonal differences in light physical activity. Physical activity volume and MVPA duration were positively associated with both the photoperiod and temperature, and negatively associated with precipitation. Sedentary behavior was negatively associated with photoperiod and positively associated with precipitation. Insufficient evidence existed to draw conclusions about light physical activity and specific weather indices. Many weather indices have been neglected in this literature (e.g., air quality, barometric pressure, cloud coverage, humidity, snow, visibility, windchill). Conclusions The natural environment can influence health by facilitating or inhibiting physical activity. Behavioral interventions should be sensitive to potential weather impacts. Extreme weather conditions brought about by climate change may compromise health-enhancing physical activity in the short term and, over longer periods of time, stimulate human migration in search of more suitable environmental niches. 
    more » « less
  4. null (Ed.)
    Abstract The frequency of heat waves (defined as daily temperature exceeding the local 90th percentile for at least three consecutive days) during summer in the United States is examined for daily maximum and minimum temperature and maximum apparent temperature, in recent observations and in 10 CMIP5 models for recent past and future. The annual average percentage of days participating in a heat wave varied between approximately 2% and 10% in observations and in the model’s historical simulations during 1979–2005. Applying today’s temperature thresholds to future projections, heat-wave frequencies rise to more than 20% by 2035–40. However, given the models’ slight overestimation of frequencies and positive trend rates during 1979–2005, these projected heat-wave frequencies should be regarded cautiously. The models’ overestimations may be associated with their higher daily autocorrelation than is found in observations. Heat-wave frequencies defined using apparent temperature, reflecting both temperature and atmospheric moisture, are projected to increase at a slightly (and statistically significantly) faster rate than for temperature alone. Analyses show little or no changes in the day-to-day variability or persistence (autocorrelation) of extreme temperature between recent past and future, indicating that the future heat-wave frequency will be due predominantly to increases in standardized (using historical period statistics) mean temperature and moisture content, adjusted by the local climatological daily autocorrelation. Using nonparametric methods, the average level and spatial pattern of future heat-wave frequency is shown to be approximately predictable on the basis of only projected mean temperature increases and local autocorrelation. These model-projected changes, even if only approximate, would impact infrastructure, ecology, and human well-being. 
    more » « less
  5. Ryckman, Kelli K (Ed.)
    Background Technology enables the continuous monitoring of personal health parameter data during pregnancy regardless of the disruption of normal daily life patterns. Our research group has established a project investigating the usefulness of an Internet of Things–based system and smartwatch technology for monitoring women during pregnancy to explore variations in stress, physical activity and sleep. The aim of this study was to examine daily patterns of well-being in pregnant women before and during the national stay-at-home restrictions related to the COVID-19 pandemic in Finland. Methods A longitudinal cohort study design was used to monitor pregnant women in their everyday settings. Two cohorts of pregnant women were recruited. In the first wave in January-December 2019, pregnant women with histories of preterm births (gestational weeks 22–36) or late miscarriages (gestational weeks 12–21); and in the second wave between October 2019 and March 2020, pregnant women with histories of full-term births (gestational weeks 37–42) and no pregnancy losses were recruited. The final sample size for this study was 38 pregnant women. The participants continuously used the Samsung Gear Sport smartwatch and their heart rate variability, and physical activity and sleep data were collected. Subjective stress, activity and sleep reports were collected using a smartphone application developed for this study. Data between February 12 to April 8, 2020 were included to cover four-week periods before and during the national stay-at-home restrictions. Hierarchical linear mixed models were exploited to analyze the trends in the outcome variables. Results The pandemic-related restrictions were associated with changes in heart rate variability: the standard deviation of all normal inter-beat intervals (p = 0.034), low-frequency power (p = 0.040) and the low-frequency/high-frequency ratio (p = 0.013) increased compared with the weeks before the restrictions. Women’s subjectively evaluated stress levels also increased significantly. Physical activity decreased when the restrictions were set and as pregnancy proceeded. The total sleep time also decreased as pregnancy proceeded, but pandemic-related restrictions were not associated with sleep. Daily rhythms changed in that the participants overall started to sleep later and woke up later. Conclusions The findings showed that Finnish pregnant women coped well with the pandemic-related restrictions and lockdown environment in terms of stress, physical activity and sleep. 
    more » « less