skip to main content

Title: Internet searches and heat-related emergency department visits in the United States
Abstract Emerging research suggests that internet search patterns may provide timely, actionable insights into adverse health impacts from, and behavioral responses to, days of extreme heat, but few studies have evaluated this hypothesis, and none have done so across the United States. We used two-stage distributed lag nonlinear models to quantify the interrelationships between daily maximum ambient temperature, internet search activity as measured by Google Trends, and heat-related emergency department (ED) visits among adults with commercial health insurance in 30 US metropolitan areas during the warm seasons (May to September) from 2016 to 2019. Maximum daily temperature was positively associated with internet searches relevant to heat, and searches were in turn positively associated with heat-related ED visits. Moreover, models combining internet search activity and temperature had better predictive ability for heat-related ED visits compared to models with temperature alone. These results suggest that internet search patterns may be useful as a leading indicator of heat-related illness or stress.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Scientific Reports
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Alaskan wildfires have major ecological, social, and economic consequences, but associated health impacts remain unexplored. We estimated cardiorespiratory morbidity associated with wildfire smoke (WFS) fine particulate matter with a diameter less than 2.5 μm (PM2.5) in three major population centers (Anchorage, Fairbanks, and the Matanuska‐Susitna Valley) during the 2015–2019 wildfire seasons. To estimate WFS PM2.5, we utilized data from ground‐based monitors and satellite‐based smoke plume estimates. We implemented time‐stratified case‐crossover analyses with single and distributed lag models to estimate the effect of WFS PM2.5on cardiorespiratory emergency department (ED) visits. On the day of exposure to WFS PM2.5, there was an increased odds of asthma‐related ED visits among 15–65 year olds (OR = 1.12, 95% CI = 1.08, 1.16), people >65 years (OR = 1.15, 95% CI = 1.01, 1.31), among Alaska Native people (OR = 1.16, 95% CI = 1.09, 1.23), and in Anchorage (OR = 1.10, 95% CI = 1.05, 1.15) and Fairbanks (OR = 1.12, 95% CI = 1.07, 1.17). There was an increased risk of heart failure related ED visits for Alaska Native people (Lag Day 5 OR = 1.13, 95% CI = 1.02, 1.25). We found evidence that rural populations may delay seeking care. As the frequency and magnitude of Alaskan wildfires continue to increase due to climate change, understanding the health impacts will be imperative. A nuanced understanding of the effects of WFS on specific demographic and geographic groups facilitates data‐driven public health interventions and fire management protocols that address these adverse health effects.

    more » « less
  2. Background Digital health is poised to transform health care and redefine personalized health. As Internet and mobile phone usage increases, as technology develops new ways to collect data, and as clinical guidelines change, all areas of medicine face new challenges and opportunities. Inflammatory bowel disease (IBD) is one of many chronic diseases that may benefit from these advances in digital health. This review intends to lay a foundation for clinicians and technologists to understand future directions and opportunities together. Objective This review covers mobile health apps that have been used in IBD, how they have fit into a clinical care framework, and the challenges that clinicians and technologists face in approaching future opportunities. Methods We searched PubMed, Scopus, and to identify mobile apps that have been studied and were published in the literature from January 1, 2010, to April 19, 2019. The search terms were (“mobile health” OR “eHealth” OR “digital health” OR “smart phone” OR “mobile app” OR “mobile applications” OR “mHealth” OR “smartphones”) AND (“IBD” OR “Inflammatory bowel disease” OR “Crohn's Disease” (CD) OR “Ulcerative Colitis” (UC) OR “UC” OR “CD”), followed by further analysis of citations from the results. We searched the Apple iTunes app store to identify a limited selection of commercial apps to include for discussion. Results A total of 68 articles met the inclusion criteria. A total of 11 digital health apps were identified in the literature and 4 commercial apps were selected to be described in this review. While most apps have some educational component, the majority of apps focus on eliciting patient-reported outcomes related to disease activity, and a few are for treatment management. Significant benefits have been seen in trials relating to education, quality of life, quality of care, treatment adherence, and medication management. No studies have reported a negative impact on any of the above. There are mixed results in terms of effects on office visits and follow-up. Conclusions While studies have shown that digital health can fit into, complement, and improve the standard clinical care of patients with IBD, there is a need for further validation and improvement, from both a clinical and patient perspective. Exploring new research methods, like microrandomized trials, may allow for more implementation of technology and rapid advancement of knowledge. New technologies that can objectively and seamlessly capture remote data, as well as complement the clinical shift from symptom-based to inflammation-based care, will help the clinical and health technology communities to understand the full potential of digital health in the care of IBD and other chronic illnesses. 
    more » « less
  3. Abstract

    Growing evidence indicates that extreme environmental conditions in summer months have an adverse impact on mental and behavioral disorders (MBD), but there is limited research looking at youth populations. The objective of this study was to apply machine learning approaches to identify key variables that predict MBD‐related emergency room (ER) visits in youths in select North Carolina cities among adolescent populations. Daily MBD‐related ER visits, which totaled over 42,000 records, were paired with daily environmental conditions, as well as sociodemographic variables to determine if certain conditions lead to higher vulnerability to exacerbated mental health disorders. Four machine learning models (i.e., generalized linear model, generalized additive model, extreme gradient boosting, random forest) were used to assess the predictive performance of multiple environmental and sociodemographic variables on MBD‐related ER visits for all cities. The best‐performing machine learning model was then applied to each of the six individual cities. As a subanalysis, a distributed lag nonlinear model was used to confirm results. In the all cities scenario, sociodemographic variables contributed the greatest to the overall MBD prediction. In the individual cities scenario, four cities had a 24‐hr difference in the maximum temperature, and two of the cities had a 24‐hr difference in the minimum temperature, maximum temperature, or Normalized Difference Vegetation Index as a leading predictor of MBD ER visits. Results can inform the use of machine learning models for predicting MBD during high‐temperature events and identify variables that affect youth MBD responses during these events.

    more » « less
  4. Ryckman, Kelli K (Ed.)
    Background Technology enables the continuous monitoring of personal health parameter data during pregnancy regardless of the disruption of normal daily life patterns. Our research group has established a project investigating the usefulness of an Internet of Things–based system and smartwatch technology for monitoring women during pregnancy to explore variations in stress, physical activity and sleep. The aim of this study was to examine daily patterns of well-being in pregnant women before and during the national stay-at-home restrictions related to the COVID-19 pandemic in Finland. Methods A longitudinal cohort study design was used to monitor pregnant women in their everyday settings. Two cohorts of pregnant women were recruited. In the first wave in January-December 2019, pregnant women with histories of preterm births (gestational weeks 22–36) or late miscarriages (gestational weeks 12–21); and in the second wave between October 2019 and March 2020, pregnant women with histories of full-term births (gestational weeks 37–42) and no pregnancy losses were recruited. The final sample size for this study was 38 pregnant women. The participants continuously used the Samsung Gear Sport smartwatch and their heart rate variability, and physical activity and sleep data were collected. Subjective stress, activity and sleep reports were collected using a smartphone application developed for this study. Data between February 12 to April 8, 2020 were included to cover four-week periods before and during the national stay-at-home restrictions. Hierarchical linear mixed models were exploited to analyze the trends in the outcome variables. Results The pandemic-related restrictions were associated with changes in heart rate variability: the standard deviation of all normal inter-beat intervals (p = 0.034), low-frequency power (p = 0.040) and the low-frequency/high-frequency ratio (p = 0.013) increased compared with the weeks before the restrictions. Women’s subjectively evaluated stress levels also increased significantly. Physical activity decreased when the restrictions were set and as pregnancy proceeded. The total sleep time also decreased as pregnancy proceeded, but pandemic-related restrictions were not associated with sleep. Daily rhythms changed in that the participants overall started to sleep later and woke up later. Conclusions The findings showed that Finnish pregnant women coped well with the pandemic-related restrictions and lockdown environment in terms of stress, physical activity and sleep. 
    more » « less
  5. null (Ed.)
    Abstract Background This scoping review summarized research on (a) seasonal differences in physical activity and sedentary behavior, and (b) specific weather indices associated with those behaviors. Methods PubMed, CINAHL, and SPORTDiscus were searched to identify relevant studies. After identifying and screening 1459 articles, data were extracted from 110 articles with 118,189 participants from 30 countries (almost exclusively high-income countries) on five continents. Results Both physical activity volume and moderate-to-vigorous physical activity (MVPA) were greater in summer than winter. Sedentary behavior was greater in winter than either spring or summer, and insufficient evidence existed to draw conclusions about seasonal differences in light physical activity. Physical activity volume and MVPA duration were positively associated with both the photoperiod and temperature, and negatively associated with precipitation. Sedentary behavior was negatively associated with photoperiod and positively associated with precipitation. Insufficient evidence existed to draw conclusions about light physical activity and specific weather indices. Many weather indices have been neglected in this literature (e.g., air quality, barometric pressure, cloud coverage, humidity, snow, visibility, windchill). Conclusions The natural environment can influence health by facilitating or inhibiting physical activity. Behavioral interventions should be sensitive to potential weather impacts. Extreme weather conditions brought about by climate change may compromise health-enhancing physical activity in the short term and, over longer periods of time, stimulate human migration in search of more suitable environmental niches. 
    more » « less