skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reducing Urban Heat Island Effects While Providing Affordable Housing in Bunker Hill
The Bunker Hill Public Housing development is a historic public housing building, home to a large population of racial and ethnic minorities, that requires major redevelopment and repair to enhance the safety of its residents. The Boston Planning and Development Agency (BPDA) recently approved a $1.46 billion redevelopment for the property, a part of which is allocated to remove and replace ~250 mature trees around the public housing units. Removal of these trees would affect an already vulnerable population significantly more exposed to the effects of heat events, including heat-related stress, morbidity, and mortality, which will worsen with climate change in the coming years. While the BPDA proposal seeks to address the issue that the area already experiences 20% less cooling due to a lack of vegetation by replanting more trees, their estimated timescale of more than a decade for the canopy to just return to its current size is concerning. In order to mitigate the added heat stress caused by the tree removal, we propose the supplementary action of installing green roofs on buildings throughout the development. These green roofs would continue to provide cooling and beneficial community services even once the tree canopy has returned. These measures will serve as an appropriate stopgap measure until the canopy can return to size and expand as well as providing the community with the same co-benefits, such as air quality improvement, noise pollution reduction, community spaces, and locally grown food from community gardens, that more affluent parts of the city already experience. The installation of green roofs and supplemental vegetation will take only 0.25% of the entire redevelopment project budget and will have a large return in community wellness.  more » « less
Award ID(s):
1735087
PAR ID:
10349550
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Science Policy & Governance
Volume:
18
Issue:
04
ISSN:
2372-2193
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Heat islands and warming temperatures are a growing global public health concern. Although cities are implementing cooling interventions, little is known about their efficacy. We conducted a literature review of field studies measuring the impact of urban cooling interventions, focusing on cooling centers, misting stations, cool pavements, and cool or green roofs. A total of 23 articles met the inclusion criteria. Studies of cooling centers measured the potential impact, based on evaluations of population proximity and heat-vulnerable populations. Reductions in temperature were reported for misting stations and cool pavements across a range of metrics. Misting station use was evaluated with temperature changes and user questionnaires. The benefits and disadvantages of each intervention are presented, and metrics for evaluating cooling interventions are compared. Gaps in the literature include a lack of measured impacts on personal thermal comfort, limited documentation on intervention costs, the need to standardize temperature metrics, and evaluation criteria. 
    more » « less
  2. Climate change is likely to have wide-ranging impacts on maternal and neonatal health in Africa. Populations in low-resource settings already experience adverse impacts from weather extremes, a high burden of disease from environmental exposures, and limited access to high-quality clinical care. Climate change is already increasing local temperatures. Neonates are at high risk of heat stress and dehydration due to their unique metabolism, physiology, growth, and developmental characteristics. Infants in low-income settings may have little protection against extreme heat due to housing design and limited access to affordable space cooling. Climate change may increase risks to neonatal health from weather disasters, decreasing food security, and facilitating infectious disease transmission. Effective interventions to reduce risks from the heat include health education on heat risks for mothers, caregivers, and clinicians; nature-based solutions to reduce urban heat islands; space cooling in health facilities; and equitable improvements in housing quality and food systems. Reductions in greenhouse gas emissions are essential to reduce the long-term impacts of climate change that will further undermine global health strategies to reduce neonatal mortality. 
    more » « less
  3. Outdoor heat stress is a growing problem in cities during hot weather. City planners and designers require more pedestrian-centered approaches to understand sidewalk microclimates. Radiation loading, as quantified by mean radiant temperature (TMRT), is a key factor driving poor thermal comfort. Street trees provide shade and consequently reduce pedestrian TMRT. However, placement of trees to optimize the cooling they provide is not yet well understood. We apply the newly-developed TUF-Pedestrian model to quantify the impacts of sidewalk tree coverage on pedestrian TMRT during summer for a lowrise neighbourhood in a midlatitude city. TUF-Pedestrian captures the detailed spatio-temporal variation of direct shading and directional longwave radiation loading on pedestrians resulting from tree shade. We conduct 190 multi-day simulations to assess a full range of sidewalk street tree coverages for five high heat exposure locations across four street orientations. We identify street directions that exhibit the largest TMRT reductions during the hottest periods of the day as a result of tree planting. Importantly, planting a shade tree on a street where none currently exist provides approximately 1.5–2 times as much radiative cooling to pedestrians as planting the same tree on a street where most of the sidewalk already benefits from tree shade. Thus, a relatively equal distribution of trees among sun-exposed pedestrian routes and sidewalks within a block or neighbourhood avoids mutual shading and therefore optimizes outdoor radiative heat reduction per tree during warm conditions. Ultimately, street tree planting should be a place-based decision and account for additional environmental and socio-political factors. 
    more » « less
  4. null (Ed.)
    Abstract The expansion of an urban tree canopy is a commonly proposed nature-based solution to combat excess urban heat. The influence trees have on urban climates via shading is driven by the morphological characteristics of trees, whereas tree transpiration is predominantly a physiological process dependent on environmental conditions and the built environment. The heterogeneous nature of urban landscapes, unique tree species assemblages, and land management decisions make it difficult to predict the magnitude and direction of cooling by transpiration. In the present article, we synthesize the emerging literature on the mechanistic controls on urban tree transpiration. We present a case study that illustrates the relationship between transpiration (using sap flow data) and urban temperatures. We examine the potential feedbacks among urban canopy, the built environment, and climate with a focus on extreme heat events. Finally, we present modeled data demonstrating the influence of transpiration on temperatures with shifts in canopy extent and irrigation during a heat wave. 
    more » « less
  5. Abstract Extreme weather events are major causes of loss of life and damage infrastructure worldwide. High temperatures cause heat stress on humans, livestock, crops and infrastructure. Heat stress exposure is projected to increase with ongoing climate change. Extremes of temperature are common in Africa and infrastructure is often incapable of providing adequate cooling. We show how easily accessible cooling technology, such as evaporative coolers, prevent heat stress in historic timescales but are unsuitable as a solution under climate change. As temperatures increase, powered cooling, such as air conditioning, is necessary to prevent overheating. This will, in turn, increase demand on already stretched infrastructure. We use high temporal resolution climate model data to estimate the demand for cooling according to two metrics, firstly the apparent temperature and secondly the discomfort index. For each grid cell we calculate the heat stress value and the amount of cooling required to turn a heat stress event into a non heat stress event. We show the increase in demand for cooling in Africa is non uniform and that equatorial countries are exposed to higher heat stress than higher latitude countries. We further show that evaporative coolers are less effective in tropical regions than in the extra tropics. Finally, we show that neither low nor high efficiency coolers are sufficient to return Africa to current levels of heat stress under climate change. 
    more » « less