skip to main content


Title: How Climate Change May Threaten Progress in Neonatal Health in the African Region
Climate change is likely to have wide-ranging impacts on maternal and neonatal health in Africa. Populations in low-resource settings already experience adverse impacts from weather extremes, a high burden of disease from environmental exposures, and limited access to high-quality clinical care. Climate change is already increasing local temperatures. Neonates are at high risk of heat stress and dehydration due to their unique metabolism, physiology, growth, and developmental characteristics. Infants in low-income settings may have little protection against extreme heat due to housing design and limited access to affordable space cooling. Climate change may increase risks to neonatal health from weather disasters, decreasing food security, and facilitating infectious disease transmission. Effective interventions to reduce risks from the heat include health education on heat risks for mothers, caregivers, and clinicians; nature-based solutions to reduce urban heat islands; space cooling in health facilities; and equitable improvements in housing quality and food systems. Reductions in greenhouse gas emissions are essential to reduce the long-term impacts of climate change that will further undermine global health strategies to reduce neonatal mortality.  more » « less
Award ID(s):
2028598
NSF-PAR ID:
10377426
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Neonatology
Volume:
119
Issue:
5
ISSN:
1661-7800
Page Range / eLocation ID:
644 to 651
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Children, and particularly infants, have physiological, anatomic, and social factors that increase vulnerability to temperature extremes. We performed a systematic review to explore the association between acute adverse infant outcomes (children 0–1 years) and exposure to high and low ambient temperatures. MEDLINE (Pubmed), Embase, CINAHL Plus, and Global Health were searched alongside the reference lists of key papers. We included published journal papers in English that assessed adverse infant outcomes related to short-term weather-related temperature exposure. Twenty-six studies met our inclusion criteria. Outcomes assessed included: infant mortality (n = 9), sudden infant death syndrome (n = 5), hospital visits or admissions (n = 5), infectious disease outcomes (n = 5), and neonatal conditions such as jaundice (n = 2). Higher temperatures were associated with increased risk of acute infant mortality, hospital admissions, and hand, foot, and mouth disease. Several studies identified low temperature impacts on infant mortality and episodes of respiratory disease. Findings on temperature risks for sudden infant death syndrome were inconsistent. Only five studies were conducted in low- or middle-income countries, and evidence on subpopulations and temperature-sensitive infectious diseases was limited. Public health measures are required to reduce the impacts of heat and cold on infant health. 
    more » « less
  2. The Bunker Hill Public Housing development is a historic public housing building, home to a large population of racial and ethnic minorities, that requires major redevelopment and repair to enhance the safety of its residents. The Boston Planning and Development Agency (BPDA) recently approved a $1.46 billion redevelopment for the property, a part of which is allocated to remove and replace ~250 mature trees around the public housing units. Removal of these trees would affect an already vulnerable population significantly more exposed to the effects of heat events, including heat-related stress, morbidity, and mortality, which will worsen with climate change in the coming years. While the BPDA proposal seeks to address the issue that the area already experiences 20% less cooling due to a lack of vegetation by replanting more trees, their estimated timescale of more than a decade for the canopy to just return to its current size is concerning. In order to mitigate the added heat stress caused by the tree removal, we propose the supplementary action of installing green roofs on buildings throughout the development. These green roofs would continue to provide cooling and beneficial community services even once the tree canopy has returned. These measures will serve as an appropriate stopgap measure until the canopy can return to size and expand as well as providing the community with the same co-benefits, such as air quality improvement, noise pollution reduction, community spaces, and locally grown food from community gardens, that more affluent parts of the city already experience. The installation of green roofs and supplemental vegetation will take only 0.25% of the entire redevelopment project budget and will have a large return in community wellness. 
    more » « less
  3. Abstract

    Simultaneous heatwaves affecting multiple regions (referred to as concurrent heatwaves) pose compounding threats to various natural and societal systems, including global food chains, emergency response systems, and reinsurance industries. While anthropogenic climate change is increasing heatwave risks across most regions, the interactions between warming and circulation changes that yield concurrent heatwaves remain understudied. Here, we quantify historical (1979–2019) trends in concurrent heatwaves during the warm season [May–September (MJJAS)] across the Northern Hemisphere mid- to high latitudes. We find a significant increase of ∼46% in the mean spatial extent of concurrent heatwaves and ∼17% increase in their maximum intensity, and an approximately sixfold increase in their frequency. Using self-organizing maps, we identify large-scale circulation patterns (300 hPa) associated with specific concurrent heatwave configurations across Northern Hemisphere regions. We show that observed changes in the frequency of specific circulation patterns preferentially increase the risk of concurrent heatwaves across particular regions. Patterns linking concurrent heatwaves across eastern North America, eastern and northern Europe, parts of Asia, and the Barents and Kara Seas show the largest increases in frequency (∼5.9 additional days per decade). We also quantify the relative contributions of circulation pattern changes and warming to overall observed concurrent heatwave day frequency trends. While warming has a predominant and positive influence on increasing concurrent heatwave frequency, circulation pattern changes have a varying influence and account for up to 0.8 additional concurrent heatwave days per decade. Identifying regions with an elevated risk of concurrent heatwaves and understanding their drivers is indispensable for evaluating projected climate risks on interconnected societal systems and fostering regional preparedness in a changing climate.

    Significance Statement

    Heatwaves pose a major threat to human health, ecosystems, and human systems. Simultaneous heatwaves affecting multiple regions can exacerbate such threats. For example, multiple food-producing regions simultaneously undergoing heat-related crop damage could drive global food shortages. We assess recent changes in the occurrence of simultaneous large heatwaves. Such simultaneous heatwaves are 7 times more likely now than 40 years ago. They are also hotter and affect a larger area. Their increasing occurrence is mainly driven by warming baseline temperatures due to global heating, but changes in weather patterns contribute to disproportionate increases over parts of Europe, the eastern United States, and Asia. Better understanding the drivers of weather pattern changes is therefore important for understanding future concurrent heatwave characteristics and their impacts.

     
    more » « less
  4. Abstract Children (<5 years) are highly vulnerable during hot weather due to their reduced ability to thermoregulate. There has been limited quantification of the burden of climate change on health in sub-Saharan Africa, in part due to a lack of evidence on the impacts of weather extremes on mortality and morbidity. Using a linear threshold model of the relationship between daily temperature and child mortality, we estimated the impact of climate change on annual heat-related child deaths for the current (1995–2020) and future time periods (2020–2050). By 2009, heat-related child mortality was double what it would have been without climate change; this outweighed reductions in heat mortality from improvements associated with development. We estimated future burdens of child mortality for three emission scenarios (SSP119, SSP245 and SSP585), and a single scenario of population growth. Under the high emission scenario (SSP585), including changes to population and mortality rates, heat-related child mortality is projected to double by 2049 compared to 2005–2014. If 2050 temperature increases were kept within the Paris target of 1.5 °C (SSP119 scenario), approximately 4000–6000 child deaths per year could be avoided in Africa. The estimates of future heat-related mortality include the assumption of the significant population growth projected for Africa, and declines in child mortality consistent with Global Burden of Disease estimates of health improvement. Our findings support the need for urgent mitigation and adaptation measures that are focussed on the health of children. 
    more » « less
  5. Abstract

    We reflect on our fieldwork experience from the Climate Heat Maternal and Neonatal Health Africa (CHAMNHA) project in Kilifi, Kenya, which focused on studying the effects of extreme heat on women during pregnancy, delivery and the post-partum period. We describe the ethical and practical challenges encountered, highlighting valuable lessons learned. We propose potential solutions to address issues concerning the reciprocity of vulnerable participants and the provision of childcare and food for accompanying children. Further, we address challenges related to engaging specific participants, interview cancellations attributed to extreme temperatures and discuss the perpetuation of inequalities by ethics and academic institutions. With the anticipated increase in research at the intersection of climate change–induced heat exposure and its impacts on human populations, research institutions and ethics committees in low- and middle-income countries are responsible for instituting guidelines that account for the risks for the subjects under study and the field researchers.

     
    more » « less