skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A semi-parametric, state-space compartmental model with time-dependent parameters for forecasting COVID-19 cases, hospitalizations and deaths
Short-term forecasts of the dynamics of coronavirus disease 2019 (COVID-19) in the period up to its decline following mass vaccination was a task that received much attention but proved difficult to do with high accuracy. However, the availability of standardized forecasts and versioned datasets from this period allows for continued work in this area. Here, we introduce the Gaussian infection state space with time dependence (GISST) forecasting model. We evaluate its performance in one to four weeks ahead forecasts of COVID-19 cases, hospital admissions and deaths in the state of California made with official reports of COVID-19, Google’s mobility reports and vaccination data available each week. Evaluation of these forecasts with a weighted interval score shows them to consistently outperform a naive baseline forecast and often score closer to or better than a high-performing ensemble forecaster. The GISST model also provides parameter estimates for a compartmental model of COVID-19 dynamics, includes a regression submodel for the transmission rate and allows for parameters to vary over time according to a random walk. GISST provides a novel, balanced combination of computational efficiency, model interpretability and applicability to large multivariate datasets that may prove useful in improving the accuracy of infectious disease forecasts.  more » « less
Award ID(s):
2027786
PAR ID:
10349576
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of The Royal Society Interface
Volume:
19
Issue:
187
ISSN:
1742-5662
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper we examine the relationship between vaccination against COVID‐19 and both the death rate from COVID‐19 and the rate of COVID‐19 spread. Our goal is determine if vaccination is associated with reduced death and/or spread of disease at the local level. This analysis was conducted at the county level in the state of Pennsylvania, United States of America, with data that were collected during the first half of 2022 from the state of Pennsylvania's Covid Dashboard (COVID‐19 Data for Pennsylvania (pa.gov). This study finds the vaccines to be highly effective in preventing death from Corona virus, even at a time when there was a mismatch between the vaccines and the prevalent variants. Specifically, a 1% increase in vaccination rate was found to correspond to a 0.751% decrease in death rate (95% confidence interval [0.236%, 1.266%]). Given that, during this time period, the vaccines being used were not geared specifically toward the common variants at that time, we found no statistically significant relationship between disease spread and vaccination rate at the county level. These results support previous findings from across the world that Covid vaccination is highly efficacious in preventing death from the disease. Even during a time when vaccine design was not optimally matched with the prevailing strains, vaccination was found to reduce death rate. Hence, improving global vaccine availability is vitally important, to achieve necessary outcomes. 
    more » « less
  2. Abstract The rapid rollout of the COVID-19 vaccine raises the question of whether and when the ongoing pandemic could be eliminated with vaccination and non-pharmaceutical interventions (NPIs). Despite advances in the impact of NPIs and the conceptual belief that NPIs and vaccination control COVID-19 infections, we lack evidence to employ control theory in real-world social human dynamics in the context of disease spreading. We bridge the gap by developing a new analytical framework that treats COVID-19 as a feedback control system with the NPIs and vaccination as the controllers and a computational model that maps human social behaviors into input signals. This approach enables us to effectively predict the epidemic spreading in 381 Metropolitan statistical areas (MSAs) in the US by learning our model parameters utilizing the time series NPIs (i.e., the stay-at-home order, face-mask wearing, and testing) data. This model allows us to optimally identify three NPIs to predict infections accurately in 381 MSAs and avoid over-fitting. Our numerical results demonstrate our approach’s excellent predictive power with R 2  > 0.9 for all the MSAs regardless of their sizes, locations, and demographic status. Our methodology allows us to estimate the needed vaccine coverage and NPIs for achieving R e to a manageable level and how the variants of concern diminish the likelihood for disease elimination at each location. Our analytical results provide insights into the debates surrounding the elimination of COVID-19. NPIs, if tailored to the MSAs, can drive the pandemic to an easily containable level and suppress future recurrences of epidemic cycles. 
    more » « less
  3. The coronavirus disease 2019 (COVID-19) pandemic has created more devastation among dialysis patients than among the general population. Patient-level prediction models for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are crucial for the early identification of patients to prevent and mitigate outbreaks within dialysis clinics. As the COVID-19 pandemic evolves, it is unclear whether or not previously built prediction models are still sufficiently effective. We developed a machine learning (XGBoost) model to predict during the incubation period a SARS-CoV-2 infection that is subsequently diagnosed after 3 or more days. We used data from multiple sources, including demographic, clinical, treatment, laboratory, and vaccination information from a national network of hemodialysis clinics, socioeconomic information from the Census Bureau, and county-level COVID-19 infection and mortality information from state and local health agencies. We created prediction models and evaluated their performances on a rolling basis to investigate the evolution of prediction power and risk factors. From April 2020 to August 2020, our machine learning model achieved an area under the receiver operating characteristic curve (AUROC) of 0.75, an improvement of over 0.07 from a previously developed machine learning model published by Kidney360 in 2021. As the pandemic evolved, the prediction performance deteriorated and fluctuated more, with the lowest AUROC of 0.6 in December 2021 and January 2022. Over the whole study period, that is, from April 2020 to February 2022, fixing the false-positive rate at 20%, our model was able to detect 40% of the positive patients. We found that features derived from local infection information reported by the Centers for Disease Control and Prevention (CDC) were the most important predictors, and vaccination status was a useful predictor as well. Whether or not a patient lives in a nursing home was an effective predictor before vaccination, but became less predictive after vaccination. As found in our study, the dynamics of the prediction model are frequently changing as the pandemic evolves. County-level infection information and vaccination information are crucial for the success of early COVID-19 prediction models. Our results show that the proposed model can effectively identify SARS-CoV-2 infections during the incubation period. Prospective studies are warranted to explore the application of such prediction models in daily clinical practice. 
    more » « less
  4. MacPherson, Peter (Ed.)
    BackgroundCoronavirus Disease 2019 (COVID-19) continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. Here, we present projections of COVID-19 hospitalizations and deaths in the United States for the next 2 years under 2 plausible assumptions about immune escape (20% per year and 50% per year) and 3 possible CDC recommendations for the use of annually reformulated vaccines (no recommendation, vaccination for those aged 65 years and over, vaccination for all eligible age groups based on FDA approval). Methods and findingsThe COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023 and April 15, 2025 under 6 scenarios representing the intersection of considered levels of immune escape and vaccination. Annually reformulated vaccines are assumed to be 65% effective against symptomatic infection with strains circulating on June 15 of each year and to become available on September 1. Age- and state-specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. State and national projections from 8 modeling teams were ensembled to produce projections for each scenario and expected reductions in disease outcomes due to vaccination over the projection period.From April 15, 2023 to April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November to January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% projection interval (PI) [1,438,000, 4,270,000]) hospitalizations and 209,000 (90% PI [139,000, 461,000]) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% confidence interval (CI) [104,000, 355,000]) fewer hospitalizations and 33,000 (95% CI [12,000, 54,000]) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000–598,000) fewer hospitalizations and 49,000 (95% CI [29,000, 69,000]) fewer deaths. ConclusionsCOVID-19 is projected to be a significant public health threat over the coming 2 years. Broad vaccination has the potential to substantially reduce the burden of this disease, saving tens of thousands of lives each year. 
    more » « less
  5. The ability to quickly learn fundamentals about a new infectious disease, such as how it is transmitted, the incubation period, and related symptoms, is crucial in any novel pandemic. For instance, rapid identification of symptoms can enable interventions for dampening the spread of the disease. Traditionally, symptoms are learned from research publications associated with clinical studies. However, clinical studies are often slow and time intensive, and hence delays can have dire consequences in a rapidly spreading pandemic like we have seen with COVID-19. In this article, we introduce SymptomID, a modular artificial intelligence–based framework for rapid identification of symptoms associated with novel pandemics using publicly available news reports. SymptomID is built using the state-of-the-art natural language processing model (Bidirectional Encoder Representations for Transformers) to extract symptoms from publicly available news reports and cluster-related symptoms together to remove redundancy. Our proposed framework requires minimal training data, because it builds on a pre-trained language model. In this study, we present a case study of SymptomID using news articles about the current COVID-19 pandemic. Our COVID-19 symptom extraction module, trained on 225 articles, achieves an F1 score of over 0.8. SymptomID can correctly identify well-established symptoms (e.g., “fever” and “cough”) and less-prevalent symptoms (e.g., “rashes,” “hair loss,” “brain fog”) associated with the novel coronavirus. We believe this framework can be extended and easily adapted in future pandemics to quickly learn relevant insights that are fundamental for understanding and combating a new infectious disease. 
    more » « less