Abstract Some reproductive-aged individuals remain unvaccinated against coronavirus disease 2019 (COVID-19) because of concerns about potential adverse effects on fertility. Using data from an internet-based preconception cohort study, we examined the associations of COVID-19 vaccination and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with fertility among couples trying to conceive spontaneously. We enrolled 2,126 self-identified female participants aged 21–45 year residing in the United States or Canada during December 2020–September 2021 and followed them through November 2021. Participants completed questionnaires every 8 weeks on sociodemographics, lifestyle, medical factors, and partner information. We fit proportional probabilities regression models to estimate associations between self-reported COVID-19 vaccination and SARS-CoV-2 infection in both partners with fecundability (i.e., the per-cycle probability of conception), adjusting for potential confounders. COVID-19 vaccination was not appreciably associated with fecundability in either partner (female fecundability ratio (FR) = 1.08, 95% confidence interval (CI): 0.95, 1.23; male FR = 0.95, 95% CI: 0.83, 1.10). Female SARS-CoV-2 infection was not strongly associated with fecundability (FR = 1.07, 95% CI: 0.87, 1.31). Male infection was associated with a transient reduction in fecundability (for infection within 60 days, FR = 0.82, 95% CI: 0.47, 1.45; for infection after 60 days, FR = 1.16, 95% CI: 0.92, 1.47). These findings indicate that male SARS-CoV-2 infection may be associated with a short-term decline in fertility and that COVID-19 vaccination does not impair fertility in either partner.
more »
« less
Predicting SARS-CoV-2 infection among hemodialysis patients using multimodal data
The coronavirus disease 2019 (COVID-19) pandemic has created more devastation among dialysis patients than among the general population. Patient-level prediction models for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are crucial for the early identification of patients to prevent and mitigate outbreaks within dialysis clinics. As the COVID-19 pandemic evolves, it is unclear whether or not previously built prediction models are still sufficiently effective. We developed a machine learning (XGBoost) model to predict during the incubation period a SARS-CoV-2 infection that is subsequently diagnosed after 3 or more days. We used data from multiple sources, including demographic, clinical, treatment, laboratory, and vaccination information from a national network of hemodialysis clinics, socioeconomic information from the Census Bureau, and county-level COVID-19 infection and mortality information from state and local health agencies. We created prediction models and evaluated their performances on a rolling basis to investigate the evolution of prediction power and risk factors. From April 2020 to August 2020, our machine learning model achieved an area under the receiver operating characteristic curve (AUROC) of 0.75, an improvement of over 0.07 from a previously developed machine learning model published by Kidney360 in 2021. As the pandemic evolved, the prediction performance deteriorated and fluctuated more, with the lowest AUROC of 0.6 in December 2021 and January 2022. Over the whole study period, that is, from April 2020 to February 2022, fixing the false-positive rate at 20%, our model was able to detect 40% of the positive patients. We found that features derived from local infection information reported by the Centers for Disease Control and Prevention (CDC) were the most important predictors, and vaccination status was a useful predictor as well. Whether or not a patient lives in a nursing home was an effective predictor before vaccination, but became less predictive after vaccination. As found in our study, the dynamics of the prediction model are frequently changing as the pandemic evolves. County-level infection information and vaccination information are crucial for the success of early COVID-19 prediction models. Our results show that the proposed model can effectively identify SARS-CoV-2 infections during the incubation period. Prospective studies are warranted to explore the application of such prediction models in daily clinical practice.
more »
« less
- Award ID(s):
- 2053423
- PAR ID:
- 10526937
- Publisher / Repository:
- Frontiers Media SA
- Date Published:
- Journal Name:
- Frontiers in Nephrology
- Volume:
- 3
- ISSN:
- 2813-0626
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Calderaro, Adriana (Ed.)The World Health Organization (WHO) declared coronavirus disease-2019 (COVID-19) a global pandemic on 11 March 2020. In Ecuador, the first case of COVID-19 was recorded on 29 February 2020. Despite efforts to control its spread, SARS-CoV-2 overran the Ecuadorian public health system, which became one of the most affected in Latin America on 24 April 2020. The Hospital General del Sur de Quito (HGSQ) had to transition from a general to a specific COVID-19 health center in a short period of time to fulfill the health demand from patients with respiratory afflictions. Here, we summarized the implementations applied in the HGSQ to become a COVID-19 exclusive hospital, including the rearrangement of hospital rooms and a triage strategy based on a severity score calculated through an artificial intelligence (AI)-assisted chest computed tomography (CT). Moreover, we present clinical, epidemiological, and laboratory data from 75 laboratory tested COVID-19 patients, which represent the first outbreak of Quito city. The majority of patients were male with a median age of 50 years. We found differences in laboratory parameters between intensive care unit (ICU) and non-ICU cases considering C-reactive protein, lactate dehydrogenase, and lymphocytes. Sensitivity and specificity of the AI-assisted chest CT were 21.4% and 66.7%, respectively, when considering a score >70%; regardless, this system became a cornerstone of hospital triage due to the lack of RT-PCR testing and timely results. If health workers act as vectors of SARS-CoV-2 at their domiciles, they can seed outbreaks that might put 1,879,047 people at risk of infection within 15 km around the hospital. Despite our limited sample size, the information presented can be used as a local example that might aid future responses in low and middle-income countries facing respiratory transmitted epidemics.more » « less
-
null (Ed.)The future trajectory of the coronavirus disease 2019 (COVID-19) pandemic hinges on the dynamics of adaptive immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, salient features of the immune response elicited by natural infection or vaccination are still uncertain. We use simple epidemiological models to explore estimates for the magnitude and timing of future COVID-19 cases, given different assumptions regarding the protective efficacy and duration of the adaptive immune response to SARS-CoV-2, as well as its interaction with vaccines and nonpharmaceutical interventions. We find that variations in the immune response to primary SARS-CoV-2 infections and a potential vaccine can lead to markedly different immune landscapes and burdens of critically severe cases, ranging from sustained epidemics to near elimination. Our findings illustrate likely complexities in future COVID-19 dynamics and highlight the importance of immunological characterization beyond the measurement of active infections for adequately projecting the immune landscape generated by SARS-CoV-2 infections.more » « less
-
The coronavirus disease 2019 (COVID-19) pandemic challenged the workings of human society, but in doing so, it advanced our understanding of the ecology and evolution of infectious diseases. Fluctuating transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demonstrated the highly dynamic nature of human social behavior, often without government intervention. Evolution of SARS-CoV-2 in the first two years following spillover resulted primarily in increased transmissibility, while in the third year, the globally dominant virus variants had all evolved substantial immune evasion. The combination of viral evolution and the buildup of host immunity through vaccination and infection greatly decreased the realized virulence of SARS-CoV-2 due to the age dependence of disease severity. The COVID-19 pandemic was exacerbated by presymptomatic, asymptomatic, and highly heterogeneous transmission, as well as highly variable disease severity and the broad host range of SARS-CoV-2. Insights and tools developed during the COVID-19 pandemic could provide a stronger scientific basis for preventing, mitigating, and controlling future pandemics.more » « less
-
null (Ed.)Background The natural history of disease in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remained obscure during the early pandemic. Aim Our objective was to estimate epidemiological parameters of coronavirus disease (COVID-19) and assess the relative infectivity of the incubation period. Methods We estimated the distributions of four epidemiological parameters of SARS-CoV-2 transmission using a large database of COVID-19 cases and potential transmission pairs of cases, and assessed their heterogeneity by demographics, epidemic phase and geographical region. We further calculated the time of peak infectivity and quantified the proportion of secondary infections during the incubation period. Results The median incubation period was 7.2 (95% confidence interval (CI): 6.9‒7.5) days. The median serial and generation intervals were similar, 4.7 (95% CI: 4.2‒5.3) and 4.6 (95% CI: 4.2‒5.1) days, respectively. Paediatric cases < 18 years had a longer incubation period than adult age groups (p = 0.007). The median incubation period increased from 4.4 days before 25 January to 11.5 days after 31 January (p < 0.001), whereas the median serial (generation) interval contracted from 5.9 (4.8) days before 25 January to 3.4 (3.7) days after. The median time from symptom onset to discharge was also shortened from 18.3 before 22 January to 14.1 days after. Peak infectivity occurred 1 day before symptom onset on average, and the incubation period accounted for 70% of transmission. Conclusion The high infectivity during the incubation period led to short generation and serial intervals, necessitating aggressive control measures such as early case finding and quarantine of close contacts.more » « less
An official website of the United States government

