skip to main content

This content will become publicly available on March 1, 2023

Title: Kinematical Analysis of Substructure in the Southern Periphery of the Large Magellanic Cloud
Abstract We report the first 3D kinematical measurements of 88 stars in the direction of several recently discovered substructures in the southern periphery of the Large Magellanic Cloud (LMC) using a combination of Gaia proper motions and radial velocities from the APOGEE-2 survey. More specifically, we explore stars in assorted APOGEE-2 pointings in a region of the LMC periphery where various overdensities of stars have previously been identified in maps of stars from Gaia and DECam. By using a model of the LMC disk rotation, we find that a sizable fraction of the APOGEE-2 stars have extreme space velocities that are distinct from, and not a simple extension of, the LMC disk. Using N -body hydrodynamical simulations of the past dynamical evolution and interaction of the LMC and Small Magellanic Cloud (SMC), we explore whether the extreme-velocity stars may be accounted for as tidal debris created in the course of that interaction. We conclude that the combination of LMC and SMC debris produced from their interaction is a promising explanation, although we cannot rule out other possible origins, and that these new data should be used to constrain future simulations of the LMC–SMC interaction. We also conclude that many of more » the stars in the southern periphery of the LMC lie outside of the LMC plane by several kiloparsecs. Given that the metallicity of these stars suggests that they are likely of Magellanic origin, our results suggest that a wider exploration of the past interaction history of the Magellanic Clouds is needed. « less
; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1908331 1909497
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present analysis of the proper-motion (PM) field of the red clump stars in the Large Magellanic Cloud (LMC) disk using the Gaia Early Data Release 3 catalog. Using a kinematic model based on old stars with 3D velocity measurements, we construct the residual PM field by subtracting the center-of-mass motion and internal rotation motion components. The residual PM field reveals asymmetric patterns, including larger residual PMs in the southern disk. Comparisons of the observed residual PM field with those of five numerical simulations of an LMC analog that is subject to the tidal fields of the Milky Way and the Small Magellanic Cloud (SMC) show that the present-day LMC is not in dynamical equilibrium. We find that both the observed level of disk heating (PM residual rms of 0.057 ± 0.002 mas yr −1 ) and kinematic asymmetry are not reproduced by Milky Way tides or if the SMC impact parameter is larger than the size of the LMC disk. This measured level of disk heating provides a novel and important method to validate numerical simulations of the LMC–SMC interaction history. Our results alone put constraints on an impact parameter ≲10 kpc and impact timing <250 Myr. Whenmore »adopting the impact timing constraint of ∼140–160 Myr ago from previous studies, our results suggest that the most recent SMC encounter must have occurred with an impact parameter of ∼5 kpc. We also find consistent radial trends in the kinematically and geometrically derived disk inclination and line-of-node position angles, indicating a common origin.« less

    We use data from the Magellanic Edges Survey (MagES) in combination with Gaia EDR3 to study the extreme southern outskirts of the Small Magellanic Cloud (SMC), focussing on a field at the eastern end of a long arm-like structure which wraps around the southern periphery of the Large Magellanic Cloud (LMC). Unlike the remainder of this structure, which is thought to be comprised of perturbed LMC disc material, the aggregate properties of the field indicate a clear connection with the SMC. We find evidence for two stellar populations in the field: one having properties consistent with the outskirts of the main SMC body, and the other significantly perturbed. The perturbed population is on average ∼0.2 dex more metal-rich, and is located ∼7 kpc in front of the dominant population with a total space velocity relative to the SMC centre of ∼230 km s−1 broadly in the direction of the LMC. We speculate on possible origins for this perturbed population, the most plausible of which is that it comprises debris from the inner SMC that has been recently tidally stripped by interactions with the LMC.


    We explore the structural and kinematic properties of the outskirts of the Large Magellanic Cloud (LMC) using data from the Magellanic Edges Survey (MagES) and Gaia EDR3. Even at large galactocentric radii (8° < R < 11°), we find the north-eastern LMC disc is relatively unperturbed: its kinematics are consistent with a disc of inclination ∼36.5° and line-of-nodes position angle ∼145° east of north. In contrast, fields at similar radii in the southern and western disc are significantly perturbed from equilibrium, with non-zero radial and vertical velocities, and distances significantly in front of the disc plane implied by our north-eastern fields. We compare our observations to simple dynamical models of the Magellanic or Milky Way system which describe the LMC as a collection of tracer particles within a rigid potential, and the Small Magellanic Cloud (SMC) as a rigid Hernquist potential. A possible SMC crossing of the LMC disc plane ∼400 Myr ago, in combination with the LMC’s infall to the Milky Way potential, can qualitatively explain many of the perturbations in the outer disc. Additionally, we find the claw-like and arm-like structures south of the LMC have similar metallicities to the outer LMC disc ([Fe/H] ∼ −1), and aremore »likely comprised of perturbed LMC disc material. The claw-like substructure is particularly disturbed, with out-of-plane velocities >60 km s−1 and apparent counter-rotation relative to the LMC’s disc motion. More detailed N-body models are necessary to elucidate the origin of these southern features, potentially requiring repeated interactions with the SMC prior to ∼1 Gyr ago.

    « less

    The highly-substructured outskirts of the Magellanic Clouds provide ideal locations for studying the complex interaction history between both Clouds and the Milky Way (MW). In this paper, we investigate the origin of a >20° long arm-like feature in the northern outskirts of the Large Magellanic Cloud (LMC) using data from the Magellanic Edges Survey (MagES) and Gaia EDR3. We find that the arm has a similar geometry and metallicity to the nearby outer LMC disc, indicating that it is comprised of perturbed disc material. Whilst the azimuthal velocity and velocity dispersions along the arm are consistent with those in the outer LMC, the in-plane radial velocity and out-of-plane vertical velocity are significantly perturbed from equilibrium disc kinematics. We compare these observations to a new suite of dynamical models of the Magellanic/MW system, which describe the LMC as a collection of tracer particles within a rigid potential, and the SMC as a rigid Hernquist potential. Our models indicate the tidal force of the MW during the LMC’s infall is likely responsible for the observed increasing out-of-plane velocity along the arm. Our models also suggest close LMC/SMC interactions within the past Gyr, particularly the SMC’s pericentric passage ∼150 Myr ago and amore »possible SMC crossing of the LMC disc plane ∼400 Myr ago, likely do not perturb stars that today comprise the arm. Historical interactions with the SMC prior to ∼1 Gyr ago may be required to explain some of the observed kinematic properties of the arm, in particular its strongly negative in-plane radial velocity.

    « less

    We present high-resolution maps of the dust reddening in the Magellanic Clouds (MCs). The maps cover the Large and Small Magellanic Cloud (LMC and SMC) area and have a spatial angular resolution between ∼26 arcsec and 55 arcmin. Based on the data from the optical and near-infrared (IR) photometric surveys, including the Gaia Survey, the SkyMapper Southern Survey (SMSS), the Survey of the Magellanic Stellar History (SMASH), the Two Micron All Sky Survey (2MASS), and the near-IR YJKS VISTA survey of the Magellanic Clouds system (VMC), we have obtained multiband photometric stellar samples containing over 6 million stars in the LMC and SMC area. Based on the measurements of the proper motions and parallaxes of the individual stars from Gaia Early Data Release 3 (Gaia EDR3), we have built clean samples that contain stars from the LMC, SMC, and Milky Way (MW), respectively. We apply the spectral energy distribution (SED) fitting to the individual sample stars to estimate their reddening values. As a result, we have derived the best-fitting reddening values of ∼1.9 million stars in the LMC, 1.5 million stars in the SMC, and 0.6 million stars in the MW, which are used to construct dust reddening maps in the MCs. Our maps aremore »consistent with those from the literature. The resultant high-resolution dust maps in the MCs are not only important tools for reddening correction of sources in the MCs, but also fundamental for the studies of the distribution and properties of dust in the two galaxies.

    « less