skip to main content


Title: Kinematical Analysis of Substructure in the Southern Periphery of the Large Magellanic Cloud
Abstract We report the first 3D kinematical measurements of 88 stars in the direction of several recently discovered substructures in the southern periphery of the Large Magellanic Cloud (LMC) using a combination of Gaia proper motions and radial velocities from the APOGEE-2 survey. More specifically, we explore stars in assorted APOGEE-2 pointings in a region of the LMC periphery where various overdensities of stars have previously been identified in maps of stars from Gaia and DECam. By using a model of the LMC disk rotation, we find that a sizable fraction of the APOGEE-2 stars have extreme space velocities that are distinct from, and not a simple extension of, the LMC disk. Using N -body hydrodynamical simulations of the past dynamical evolution and interaction of the LMC and Small Magellanic Cloud (SMC), we explore whether the extreme-velocity stars may be accounted for as tidal debris created in the course of that interaction. We conclude that the combination of LMC and SMC debris produced from their interaction is a promising explanation, although we cannot rule out other possible origins, and that these new data should be used to constrain future simulations of the LMC–SMC interaction. We also conclude that many of the stars in the southern periphery of the LMC lie outside of the LMC plane by several kiloparsecs. Given that the metallicity of these stars suggests that they are likely of Magellanic origin, our results suggest that a wider exploration of the past interaction history of the Magellanic Clouds is needed.  more » « less
Award ID(s):
1908331 1909497
NSF-PAR ID:
10349599
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
928
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
95
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The Magellanic Cloud system represents a unique laboratory for study of both interacting dwarf galaxies and the ongoing process of the formation of the Milky Way and its halo. We focus on one aspect of this complex, three-body interaction – the dynamical perturbation of the Small Magellanic Cloud (SMC) by the Large Magellanic Cloud (LMC), and specifically potential tidal effects on the SMC’s eastern side. Using Gaia astrometry and the precise radial velocities (RVs) and multielement chemical abundances from Apache Point Observatory Galactic Evolution Experiment (APOGEE-2) Data Release 17, we explore the well-known distance bimodality on the eastern side of the SMC. Through estimated stellar distances, proper motions, and RVs, we characterize the kinematics of the two populations in the bimodality and compare their properties with those of SMC populations elsewhere. Moreover, while all regions explored by APOGEE seem to show a single chemical enrichment history, the metallicity distribution function (MDF), of the ‘far’ stars on the eastern periphery of the SMC is found to resemble that for the more metal-poor fields of the western periphery, whereas the MDF for the ‘near’ stars on the eastern periphery resembles that for stars in the SMC Centre. The closer eastern periphery stars also show RVs (corrected for SMC rotation and bulk motion) that are, on average, approaching us relative to all other SMC populations sampled. We interpret these trends as evidence that the near stars on the eastern side of the SMC represent material pulled out of the central SMC as part of its tidal interaction with the LMC.

     
    more » « less
  2. ABSTRACT

    We use data from the Magellanic Edges Survey (MagES) in combination with Gaia EDR3 to study the extreme southern outskirts of the Small Magellanic Cloud (SMC), focussing on a field at the eastern end of a long arm-like structure which wraps around the southern periphery of the Large Magellanic Cloud (LMC). Unlike the remainder of this structure, which is thought to be comprised of perturbed LMC disc material, the aggregate properties of the field indicate a clear connection with the SMC. We find evidence for two stellar populations in the field: one having properties consistent with the outskirts of the main SMC body, and the other significantly perturbed. The perturbed population is on average ∼0.2 dex more metal-rich, and is located ∼7 kpc in front of the dominant population with a total space velocity relative to the SMC centre of ∼230 km s−1 broadly in the direction of the LMC. We speculate on possible origins for this perturbed population, the most plausible of which is that it comprises debris from the inner SMC that has been recently tidally stripped by interactions with the LMC.

     
    more » « less
  3. Abstract We present analysis of the proper-motion (PM) field of the red clump stars in the Large Magellanic Cloud (LMC) disk using the Gaia Early Data Release 3 catalog. Using a kinematic model based on old stars with 3D velocity measurements, we construct the residual PM field by subtracting the center-of-mass motion and internal rotation motion components. The residual PM field reveals asymmetric patterns, including larger residual PMs in the southern disk. Comparisons of the observed residual PM field with those of five numerical simulations of an LMC analog that is subject to the tidal fields of the Milky Way and the Small Magellanic Cloud (SMC) show that the present-day LMC is not in dynamical equilibrium. We find that both the observed level of disk heating (PM residual rms of 0.057 ± 0.002 mas yr −1 ) and kinematic asymmetry are not reproduced by Milky Way tides or if the SMC impact parameter is larger than the size of the LMC disk. This measured level of disk heating provides a novel and important method to validate numerical simulations of the LMC–SMC interaction history. Our results alone put constraints on an impact parameter ≲10 kpc and impact timing <250 Myr. When adopting the impact timing constraint of ∼140–160 Myr ago from previous studies, our results suggest that the most recent SMC encounter must have occurred with an impact parameter of ∼5 kpc. We also find consistent radial trends in the kinematically and geometrically derived disk inclination and line-of-node position angles, indicating a common origin. 
    more » « less
  4. ABSTRACT

    We explore the structural and kinematic properties of the outskirts of the Large Magellanic Cloud (LMC) using data from the Magellanic Edges Survey (MagES) and Gaia EDR3. Even at large galactocentric radii (8° < R < 11°), we find the north-eastern LMC disc is relatively unperturbed: its kinematics are consistent with a disc of inclination ∼36.5° and line-of-nodes position angle ∼145° east of north. In contrast, fields at similar radii in the southern and western disc are significantly perturbed from equilibrium, with non-zero radial and vertical velocities, and distances significantly in front of the disc plane implied by our north-eastern fields. We compare our observations to simple dynamical models of the Magellanic or Milky Way system which describe the LMC as a collection of tracer particles within a rigid potential, and the Small Magellanic Cloud (SMC) as a rigid Hernquist potential. A possible SMC crossing of the LMC disc plane ∼400 Myr ago, in combination with the LMC’s infall to the Milky Way potential, can qualitatively explain many of the perturbations in the outer disc. Additionally, we find the claw-like and arm-like structures south of the LMC have similar metallicities to the outer LMC disc ([Fe/H] ∼ −1), and are likely comprised of perturbed LMC disc material. The claw-like substructure is particularly disturbed, with out-of-plane velocities >60 km s−1 and apparent counter-rotation relative to the LMC’s disc motion. More detailed N-body models are necessary to elucidate the origin of these southern features, potentially requiring repeated interactions with the SMC prior to ∼1 Gyr ago.

     
    more » « less
  5. ABSTRACT

    In this paper, we analyse the metallicity structure of the Magellanic Clouds using parameters derived from the Gaia Data Release 3 (DR3) low-resolution XP (for Blue/Red Photometer) spectra, astrometry, and photometry. We find that the qualitative behaviour of the radial metallicity gradients in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) is quite similar, with both of them having a metallicity plateau at intermediate radii and a second at larger radii. The LMC has a first metallicity plateau at [M/H] ≈ −0.8 for 3–7°, while the SMC has one at [M/H] ≈ −1.1 for 3–5°. The outer LMC periphery has a fairly constant metallicity of [M/H] ≈ −1.0 (10–18°), while the outer SMC periphery has a value of [M/H] ≈ −1.3 (6–10°). The sharp drop in metallicity in the LMC at ∼8° and the marked difference in age distributions in these two regions suggest that there were two important evolutionary phases in the LMC. In addition, we find that the Magellanic periphery substructures, likely Magellanic debris, are mostly dominated by LMC material stripped off in old interactions with the SMC. This presents a new picture in contrast with the popular belief that the debris around the clouds had been mostly stripped off from the SMC due to having a lower mass. We perform a detailed analysis for each known substructure and identify its potential origin based on metallicities and motions with respect to each galaxy.

     
    more » « less