skip to main content

This content will become publicly available on March 1, 2023

Title: The Recent LMC–SMC Collision: Timing and Impact Parameter Constraints from Comparison of Gaia LMC Disk Kinematics and N-body Simulations
Abstract We present analysis of the proper-motion (PM) field of the red clump stars in the Large Magellanic Cloud (LMC) disk using the Gaia Early Data Release 3 catalog. Using a kinematic model based on old stars with 3D velocity measurements, we construct the residual PM field by subtracting the center-of-mass motion and internal rotation motion components. The residual PM field reveals asymmetric patterns, including larger residual PMs in the southern disk. Comparisons of the observed residual PM field with those of five numerical simulations of an LMC analog that is subject to the tidal fields of the Milky Way and the Small Magellanic Cloud (SMC) show that the present-day LMC is not in dynamical equilibrium. We find that both the observed level of disk heating (PM residual rms of 0.057 ± 0.002 mas yr −1 ) and kinematic asymmetry are not reproduced by Milky Way tides or if the SMC impact parameter is larger than the size of the LMC disk. This measured level of disk heating provides a novel and important method to validate numerical simulations of the LMC–SMC interaction history. Our results alone put constraints on an impact parameter ≲10 kpc and impact timing <250 Myr. When more » adopting the impact timing constraint of ∼140–160 Myr ago from previous studies, our results suggest that the most recent SMC encounter must have occurred with an impact parameter of ∼5 kpc. We also find consistent radial trends in the kinematically and geometrically derived disk inclination and line-of-node position angles, indicating a common origin. « less
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this

    We explore the structural and kinematic properties of the outskirts of the Large Magellanic Cloud (LMC) using data from the Magellanic Edges Survey (MagES) and Gaia EDR3. Even at large galactocentric radii (8° < R < 11°), we find the north-eastern LMC disc is relatively unperturbed: its kinematics are consistent with a disc of inclination ∼36.5° and line-of-nodes position angle ∼145° east of north. In contrast, fields at similar radii in the southern and western disc are significantly perturbed from equilibrium, with non-zero radial and vertical velocities, and distances significantly in front of the disc plane implied by our north-eastern fields. We compare our observations to simple dynamical models of the Magellanic or Milky Way system which describe the LMC as a collection of tracer particles within a rigid potential, and the Small Magellanic Cloud (SMC) as a rigid Hernquist potential. A possible SMC crossing of the LMC disc plane ∼400 Myr ago, in combination with the LMC’s infall to the Milky Way potential, can qualitatively explain many of the perturbations in the outer disc. Additionally, we find the claw-like and arm-like structures south of the LMC have similar metallicities to the outer LMC disc ([Fe/H] ∼ −1), and aremore »likely comprised of perturbed LMC disc material. The claw-like substructure is particularly disturbed, with out-of-plane velocities >60 km s−1 and apparent counter-rotation relative to the LMC’s disc motion. More detailed N-body models are necessary to elucidate the origin of these southern features, potentially requiring repeated interactions with the SMC prior to ∼1 Gyr ago.

    « less

    The highly-substructured outskirts of the Magellanic Clouds provide ideal locations for studying the complex interaction history between both Clouds and the Milky Way (MW). In this paper, we investigate the origin of a >20° long arm-like feature in the northern outskirts of the Large Magellanic Cloud (LMC) using data from the Magellanic Edges Survey (MagES) and Gaia EDR3. We find that the arm has a similar geometry and metallicity to the nearby outer LMC disc, indicating that it is comprised of perturbed disc material. Whilst the azimuthal velocity and velocity dispersions along the arm are consistent with those in the outer LMC, the in-plane radial velocity and out-of-plane vertical velocity are significantly perturbed from equilibrium disc kinematics. We compare these observations to a new suite of dynamical models of the Magellanic/MW system, which describe the LMC as a collection of tracer particles within a rigid potential, and the SMC as a rigid Hernquist potential. Our models indicate the tidal force of the MW during the LMC’s infall is likely responsible for the observed increasing out-of-plane velocity along the arm. Our models also suggest close LMC/SMC interactions within the past Gyr, particularly the SMC’s pericentric passage ∼150 Myr ago and amore »possible SMC crossing of the LMC disc plane ∼400 Myr ago, likely do not perturb stars that today comprise the arm. Historical interactions with the SMC prior to ∼1 Gyr ago may be required to explain some of the observed kinematic properties of the arm, in particular its strongly negative in-plane radial velocity.

    « less
  3. ABSTRACT Within lambda cold dark matter ($\Lambda$CDM), dwarf galaxies like the Large Magellanic Cloud (LMC) are expected to host numerous dark matter subhaloes, several of which should host faint dwarf companions. Recent Gaia proper motions confirm new members of the LMC system in addition to the previously known SMC, including two classical dwarf galaxies ($M_\ast$$\gt 10^5$ M$_{\odot }$; Carina and Fornax) as well as several ultrafaint dwarfs (Car2, Car3, Hor1, and Hyd1). We use the Feedback In Realistic Environments (FIRE) simulations to study the dark and luminous (down to ultrafaint masses, $M_\ast$$\sim$6$\times 10^ {3}$ M$_{\odot }$) substructure population of isolated LMC-mass hosts ($M_{\text{200m}}$ = 1–3$\times 10^ {11}$ M$_{\odot }$) and place the Gaia  + DES results in a cosmological context. By comparing number counts of subhaloes in simulations with and without baryons, we find that, within 0.2 $r_{\text{200m}}$, LMC-mass hosts deplete $\sim$30 per cent of their substructure, significantly lower than the $\sim$70 per cent of substructure depleted by Milky Way (MW) mass hosts. For our highest resolution runs ($m_\text{bary}$  = 880 M$_{\odot }$), $\sim 5\!-\!10$ subhaloes form galaxies with $M_\ast$$\ge 10^{4}$ M$_{\odot }$ , in agreement with the seven observationally inferred pre-infall LMC companions. However, we find steeper simulated luminosity functions than observed, hinting at observation incompleteness at the faintmore »end. The predicted DM content for classical satellites in FIRE agrees with observed estimates for Carina and Fornax, supporting the case for an LMC association. We predict that tidal stripping within the LMC potential lowers the inner dark matter density of ultrafaint companions of the LMC. Thus, in addition to their orbital consistency, the low densities of dwarfs Car2, Hyd1, and Hyd2 reinforce their likelihood of Magellanic association.« less
  4. ABSTRACT Characterizing the predicted environments of dwarf galaxies like the Large Magellanic Cloud (LMC) is becoming increasingly important as next-generation surveys push sensitivity limits into this low-mass regime at cosmological distances. We study the environmental effects of LMC-mass haloes (M200m ∼ 1011 M⊙) on their populations of satellites (M⋆ ≥ 104 M⊙) using a suite of zoom-in simulations from the Feedback In Realistic Environments (FIRE) project. Our simulations predict significant hot coronas with T ∼ 105 K and Mgas ∼ 109.5 M⊙. We identify signatures of environmental quenching in dwarf satellite galaxies, particularly for satellites with intermediate mass (M⋆ = 106–107 M⊙). The gas content of such objects indicates ram pressure as the likely quenching mechanism, sometimes aided by star formation feedback. Satellites of LMC-mass hosts replicate the stellar mass dependence of the quiescent fraction found in satellites of Milky Way-mass hosts (i.e. that the quiescent fraction increases as stellar mass decreases). Satellites of LMC-mass hosts have a wider variety of quenching times when compared to the strongly bimodal distribution of quenching times of nearby centrals. Finally, we identify significant tidal stellar structures around four of our six LMC analogues, suggesting that stellar streams may be common. These tidal features originatedmore »from satellites on close orbits, extend to ∼80 kpc from the central galaxy, and contain ∼106–107 M⊙ of stars.« less
  5. Abstract A significant fraction of Milky Way (MW) satellites exhibit phase-space properties consistent with a coherent orbital plane. Using tailored N -body simulations of a spherical MW halo that recently captured a massive (1.8 × 10 11 M ⊙ ) LMC-like satellite, we identify the physical mechanisms that may enhance the clustering of orbital poles of objects orbiting the MW. The LMC deviates the orbital poles of MW dark matter particles from the present-day random distribution. Instead, the orbital poles of particles beyond R ≈ 50 kpc cluster near the present-day orbital pole of the LMC along a sinusoidal pattern across the sky. The density of orbital poles is enhanced near the LMC by a factor δ ρ max = 30% (50%) with respect to underdense regions and δ ρ iso = 15% (30%) relative to the isolated MW simulation (no LMC) between 50 and 150 kpc (150–300 kpc). The clustering appears after the LMC’s pericenter (≈50 Myr ago, 49 kpc) and lasts for at least 1 Gyr. Clustering occurs because of three effects: (1) the LMC shifts the velocity and position of the central density of the MW’s halo and disk; (2) the dark matter dynamical friction wake andmore »collective response induced by the LMC change the kinematics of particles; (3) observations of particles selected within spatial planes suffer from a bias, such that measuring orbital poles in a great circle in the sky enhances the probability of their orbital poles being clustered. This scenario should be ubiquitous in hosts that recently captured a massive satellite (at least ≈1:10 mass ratio), causing the clustering of orbital poles of halo tracers.« less