skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Producing high yield of levoglucosan by pyrolyzing nonthermal plasma-pretreated cellulose
Atmospheric pressure nonthermal plasma treatment can be a novel, green and low energy method to convert biomass to biobased chemicals. The unique physiochemistry of plasma discharge enables reactions within biomass that otherwise could not possibly occur under traditional conditions. In this study, we present a simple method of producing a high yield of levoglucosan from cellulose without using any catalysts, chemicals, solvents or vacuum, but by using plasma treatment to control the depolymerization mechanism of cellulose. Cellulose was first pretreated in a dielectric barrier discharge reactor operating in ambient air or argon for 10–60 s, followed by pyrolysis at 350–450 °C to produce up to 78.6% of levoglucosan. Without the plasma pretreatment, the maximum yield of levoglucosan from cellulose pyrolysis was 58.2%. The results of this study showed that the plasma pretreatment led to homolytic cleavage of glycosidic bonds. The resulting free radicals were then trapped within the cellulose structure when the plasma discharge stopped, allowing subsequent pyrolysis of the plasma-pretreated cellulose to proceed through a radical-based mechanism. The present results also revealed that although the radical-based mechanism is highly selective to levoglucosan formation, this pathway is usually discouraged when the untreated cellulose is pyrolyzed due to the high energy barrier for homolytic cleavage. Initiating homolytic cleavage during the plasma pretreatment also helped the pretreated cellulose to produce higher yields of levoglucosan using lower pyrolysis temperatures. At 375 °C, the levoglucosan yield was only 53.2% for the untreated cellulose, whereas the yield reached 77.6% for the argon-plasma pretreated cellulose.  more » « less
Award ID(s):
1803823
PAR ID:
10349604
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Green Chemistry
Volume:
22
Issue:
6
ISSN:
1463-9262
Page Range / eLocation ID:
2036 to 2048
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Integrating multidisciplinary research in plant genetic engineering and renewable deep eutectic solvents (DESs) can facilitate a sustainable and economic biorefinery. Herein, we leveraged a plant genetic engineering approach to specifically incorporate C6C1monomers into the lignin structure. By expressing the bacterialubiCgene in sorghum,p‐hydroxybenzoic acid (PB)‐rich lignin was incorporated into the plant cell wall while this monomer was completely absent in the lignin of the wild‐type (WT) biomass. A DES was synthesized with choline chloride (ChCl) and PB and applied to the pretreatment of the PB‐rich mutant biomass for a sustainable biorefinery. The release of fermentable sugars was significantly enhanced (∼190 % increase) compared to untreated biomass by the DES pretreatment. In particular, the glucose released from the pretreated mutant biomass was up to 12 % higher than that from the pretreated WT biomass. Lignin was effectively removed from the biomass with the preservation of more than half of the β‐Ο‐4 linkages without condensed aromatic structures. Hydrogenolysis of the fractionated lignin was conducted to demonstrate the potential of phenolic compound production. In addition, a simple hydrothermal treatment could selectively extract PB from the same engineered lignin, showing a possible circular biorefinery. These results suggest that the combination of PB‐based DES and engineered PB‐rich biomass is a promising strategy to achieve a sustainable closed‐loop biorefinery. 
    more » « less
  2. Biomass fast pyrolysis has emerged as a highly promising technology for producing renewable fuels and chemicals. However, the inherent multi-scale and multiphase nature of the process and the heterogeneous nature of biomass feedstocks typically lead to low selectivity toward each bio-oil molecule, posing significant commercialization challenges. Molecular-level understanding of the biomass pyrolysis reaction kinetics considering the interactions between the main constituents (i.e., cellulose, hemicellulose, and lignin) is essential to advance the macroscopic design, scale-up, and optimization of the process. In this work, microreactor experiments were conducted to determine the effects of lignin structures on the yields of cellulose-derived products during pyrolysis. We show that levoglucosan formation is inhibited by the β-O-4 lignin linkages or catalyzed by the 5-5 linkages, glycolaldehyde formation is catalyzed by the β-O-4 linkages or inhibited by the 5-5 linkages, and 5-hydroxymethylfurfural formation is inhibited by either linkage. Density functional theory calculations reveal that these catalytic and inhibitory effects on cellulose fast pyrolysis are induced by noncovalent interactions between cellulose and lignin. The molecular-level picture of cellulose–lignin interactions uncovered in this work paves the way for further use of genetic engineering to grow new genotypes of biomass for selective production of value-added chemicals and machine learning approaches to obtain correlations between biomass structures and product yields for biomass fast pyrolysis. 
    more » « less
  3. Hongwei Wu (Ed.)
    Pyrolytic lignin is a fraction of pyrolysis oil that contains a wide range of phenolic compounds that can be used as intermediates to produce fuels and chemicals. However, the characteristics of the raw lignin structure make it difficult to establish a pyrolysis mechanism and determine pyrolytic lignin structures. This study proposes dimer, trimer, and tetramer structures based on their relative thermodynamic stability for a hardwood lignin model in pyrolysis. Different configurations of oligomers were evaluated by varying the positions of the guaiacyl (G) and syringyl (S) units and the bonds βO4 and β5 in the hardwood model lignin through electronic structure calculations. The homolytic cleavage of βO4 bonds is assumed to occur and generate two free radical fragments. These can stabilize by taking hydrogen radicals that may be in solution during the intermediate liquid (pathway 1) formation before the thermal ejection. An alternative pathway (pathway 2) could occur when the radicals use intramolecular hydrogen, turning themselves into stable products. Subsequently, a demethylation reaction can take place, thus generating a methane molecule and new oligomeric lignin-derived molecules. The most probable resulting structures were studied. We used FTIR and NMR spectra of selected model compounds to evaluate our calculation approach. Thermophysical properties were calculated using group contribution methods. The results give insights into the lignin oligomer structures and how these molecules are formed. They also provide helpful information for the design of pyrolysis oil separation and upgrading equipment. 
    more » « less
  4. null (Ed.)
    The potential of cotton gin waste, a considerable challenge to the gin owners, has not been fully investigated as a renewable energy source via anaerobic digestion. The weathered cotton gin trash and inoculum for triplicate biomethane potential assays were obtained from a local cotton gin mill and a municipal wastewater treatment plant, respectively. The moisture, total solids, volatile solids, and C, H, N, S, hemicellulose + cellulose, and lignin contents of gin waste were determined in triplicates. The biomethane potential of untreated and pretreated (hot water and 6% NaOH (wet CGT weight basis) gin waste was determined at different inoculum to substrate ratios. The highest cumulative biomethane yield of 111.8 mL gvs-1 was observed in inoculum to substrate ratio of 2.3, and it was statistically similar to the values; 101.8, 104.7, 100.5, and 108.9 gvs-1, observed in 0.8, 1.2, 1.5, and 1.9, respectively. The biomethane yield at the inoculum to substrate ratio of 0.4 was significantly lower than all higher ratios. The T80-90 for biomethane production was 26-30 for the ISRs of 1.2, 1.5, and 2.3. The T80-90 for inoculum to substrate ratios of 0.4, 0.8, and 1.9 were 26-31, 27-32, and 27-31 d, respectively. The modified Gompertz equation fitted very well (R2 = 0.98-0.99) to the anaerobic digestion at all inoculum to substrate ratios and pretreatments as the observed and predicted biomethane values were similar. The model predicted a lag phase of 8-10 days for control and treatments compared to the observed of 10-15 days. The highest biodegradability of 24.8±2.6% was observed at inoculum to substrate ratio of 2.3, which was statistically similar to the values observed in ratios of 0.8, 1.2, 1.5, and 1.9, respectively. Among pretreatments, the highest biodegradability of 33.0±2.4 was observed in 6% NaOH pretreatment, and it was statistically similar to hot water treatment and non-pretreated or control. These research findings advance the knowledge in the anaerobic degradation of cotton gin trash, thus helping to maximize biomethane recovery from this agro-industrial waste. 
    more » « less
  5. Herein, we report a novel method to obtain oxygenated chemicals and high-quality lignin from biomass in one-pot using a single step process. Plasma electrolysis of red oak was conducted by applying high-voltage alternating current electricity in γ-valerolactone using sulfuric acid as the electrolyte. Red oak was completely solubilized to produce levoglucosenone and furfural as the two major monomers with the respective yields of up to 44.9 mol% and 98.0 mol%. During the conversion, an oxidized lignin was also simultaneously produced in high purity. The valorization potential of the plasma electrolysis-derived lignin evaluated using the pyrolysis method showed that depolymerization of this lignin could produce significantly higher yields of phenolic monomers than the natural lignin or the lignin isolated during conventional solvolysis. Our investigation showed that benzylic carbon of the natural lignin was selectively modified during plasma electrolysis to limit the formation of interunit C–C bonds, significantly improving the subsequent lignin valorization to aromatic monomers. Overall, this study demonstrated a simple green approach to improve chemical production without using costly catalysts or tedious biomass fractionation. This study also presented a novel and highly efficient way to modify lignin for enhanced valorization. 
    more » « less