skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Propagating Geometry Information to Finite Element Computations
The traditional workflow in continuum mechanics simulations is that a geometry description —for example obtained using Constructive Solid Geometry (CSG) or Computer Aided Design (CAD) tools—forms the input for a mesh generator. The mesh is then used as the sole input for the finite element, finite volume, and finite difference solver, which at this point no longer has access to the original, “underlying” geometry. However, many modern techniques—for example, adaptive mesh refinement and the use of higher order geometry approximation methods—really do need information about the underlying geometry to realize their full potential. We have undertaken an exhaustive study of where typical finite element codes use geometry information, with the goal of determining what information geometry tools would have to provide. Our study shows that nearly all geometry-related needs inside the simulators can be satisfied by just two “primitives”: elementary queries posed by the simulation software to the geometry description. We then show that it is possible to provide these primitives in all of the frequently used ways in which geometries are described in common industrial workflows, and illustrate our solutions using a number of examples.  more » « less
Award ID(s):
1925595 1821210 1835673
PAR ID:
10349706
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Transactions on Mathematical Software
Volume:
47
Issue:
4
ISSN:
0098-3500
Page Range / eLocation ID:
1 to 30
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Finite Element Method (FEM) is widely used to solve discrete Partial Differential Equations (PDEs) in engineering and graphics applications. The popularity of FEM led to the development of a large family of variants, most of which require a tetrahedral or hexahedral mesh to construct the basis. While the theoretical properties of FEM basis (such as convergence rate, stability, etc.) are well understood under specific assumptions on the mesh quality, their practical performance, influenced both by the choice of the basis construction and quality of mesh generation, have not been systematically documented for large collections of automatically meshed 3D geometries. We introduce a set of benchmark problems involving most commonly solved elliptic PDEs, starting from simple cases with an analytical solution, moving to commonly used test problem setups, and using manufactured solutions for thousands of real-world, automatically meshed geometries. For all these cases, we use state-of-the-art meshing tools to create both tetrahedral and hexahedral meshes, and compare the performance of different element types for common elliptic PDEs. The goal of this benchmark is to enable comparison of complete FEM pipelines, from mesh generation to algebraic solver, and exploration of relative impact of different factors on the overall system performance. As a specific application of our geometry and benchmark dataset, we explore the question of relative advantages of unstructured (triangular/ tetrahedral) and structured (quadrilateral/hexahedral) discretizations. We observe that for Lagrange-type elements, while linear tetrahedral elements perform poorly, quadratic tetrahedral elements perform equally well or outperform hexahedral elements for our set of problems and currently available mesh generation algorithms. This observation suggests that for common problems in structural analysis, thermal analysis, and low Reynolds number flows, high-quality results can be obtained with unstructured tetrahedral meshes, which can be created robustly and automatically. We release the description of the benchmark problems, meshes, and reference implementation of our testing infrastructure to enable statistically significant comparisons between different FE methods, which we hope will be helpful in the development of new meshing and FEA techniques. 
    more » « less
  2. ABSTRACT In fatigue evaluation of welded structures, explicit weld representations in finite element (FE) models are needed for reliably capturing stress or strain concentration behaviors at critical weld locations, for example, weld toe or weld root, in using widely accepted traction structural stress or extrapolation hot‐spot stress methods. The laborious efforts needed for generating weld geometry have been a major challenge for fatigue evaluation of complex structures containing many welds. In this paper, we present a user‐defined fillet‐weld element formulation and its numerical implementation for computing traction mesh‐insensitive structural stresses. The fillet‐weld element is formulated by connecting several linear four‐nodes Mindlin shell elements around weld region as a user‐defined element. The resulting elements can be directly used with major commercial FE codes through an available user subroutine interface. A number of well‐documented fillet‐welded components are then used for validating the accuracy and robustness of the developed fillet‐weld elements. 
    more » « less
  3. Faithful, accurate, and successful cardiac biomechanics and electrophysiological simulations require patient-specific geometric models of the heart. Since the cardiac geometry consists of highly-curved boundaries, the use of high-order meshes with curved elements would ensure that the various curves and features present in the cardiac geometry are well-captured and preserved in the corresponding mesh. Most other existing mesh generation techniques require computer-aided design files to represent the geometric boundary, which are often not available for biomedical applications. Unlike such methods, our technique takes a high-order surface mesh, generated from patient medical images, as input and generates a high-order volume mesh directly from the curved surface mesh. In this paper, we use our direct high-order curvilinear tetrahedral mesh generation method [1] to generate several second-order cardiac meshes. Our meshes include the left ventricle myocardia of a healthy heart and hearts with dilated and hypertrophic cardiomyopathy. We show that our high-order cardiac meshes do not contain inverted elements and are of sufficiently high quality for use in cardiac finite element simulations. 
    more » « less
  4. We present the lowest-order hybridizable discontinuous Galerkin schemes with numerical integration (quadrature), denoted as HDG-P0 for the reaction-diffusion equation and the generalized Stokes equations on conforming simplicial meshes in two- and three-dimensions. Here by lowest order, we mean that the (hybrid) finite element space for the global HDG facet degrees of freedom (DOFs) is the space of piecewise constants on the mesh skeleton. A discontinuous piecewise linear space is used for the approximation of the local primal unknowns. We give the optimal a priori error analysis of the proposed HDG-P0 schemes, which hasn’t appeared in the literature yet for HDG discretizations as far as numerical integration is concerned. Moreover, we propose optimal geometric multigrid preconditioners for the statically condensed HDG-P0 linear systems on conforming simplicial meshes. In both cases, we first establish the equivalence of the statically condensed HDG system with a (slightly modified) nonconforming Crouzeix–Raviart (CR) discretization, where the global (piecewise-constant) HDG finite element space on the mesh skeleton has a natural one-to-one correspondence to the nonconforming CR (piecewise-linear) finite element space that live on the whole mesh. This equivalence then allows us to use the well-established nonconforming geometry multigrid theory to precondition the condensed HDG system. Numerical results in two- and three-dimensions are presented to verify our theoretical findings. 
    more » « less
  5. null (Ed.)
    Abstract The convergence characteristics of three geometrically accurate spatial finite elements (FEs) are examined in this study using an eigenvalue analysis. The spatial beam, plate, and solid elements considered in this investigation are suited for both structural and multibody system (MBS) applications. These spatial elements are based on geometry derived from the kinematic description of the absolute nodal coordinate formulation (ANCF). In order to allow for an accurate reference-configuration geometry description, the element shape functions are formulated using constant geometry coefficients defined using the position-vector gradients in the reference configuration. The change in the position-vector gradients is used to define a velocity transformation matrix that leads to constant element inertia and stiffness matrices in the case of infinitesimal rotations. In contrast to conventional structural finite elements, the elements considered in this study can be used to describe the initial geometry with the same degree of accuracy as B-spline and nonuniform rational B-spline (NURBS) representations, widely used in the computer-aided design (CAD). An eigenvalue analysis is performed to evaluate the element convergence characteristics in the case of different geometries, including straight, tapered, and curved configurations. The frequencies obtained are compared with those obtained using a commercial FE software and analytical solutions. The stiffness matrix is obtained using both the general continuum mechanics (GCM) approach and the newly proposed strain split method (SSM) in order to investigate its effectiveness as a locking alleviation technique. 
    more » « less