The Finite Element Method (FEM) is widely used to solve discrete Partial Differential Equations (PDEs) in engineering and graphics applications. The popularity of FEM led to the development of a large family of variants, most of which require a tetrahedral or hexahedral mesh to construct the basis. While the theoretical properties of FEM basis (such as convergence rate, stability, etc.) are well understood under specific assumptions on the mesh quality, their practical performance, influenced both by the choice of the basis construction and quality of mesh generation, have not been systematically documented for large collections of automatically meshed 3D geometries. We introduce a set of benchmark problems involving most commonly solved elliptic PDEs, starting from simple cases with an analytical solution, moving to commonly used test problem setups, and using manufactured solutions for thousands of real-world, automatically meshed geometries. For all these cases, we use state-of-the-art meshing tools to create both tetrahedral and hexahedral meshes, and compare the performance of different element types for common elliptic PDEs. The goal of this benchmark is to enable comparison of complete FEM pipelines, from mesh generation to algebraic solver, and exploration of relative impact of different factors on the overall system performance. As a specific application of our geometry and benchmark dataset, we explore the question of relative advantages of unstructured (triangular/ tetrahedral) and structured (quadrilateral/hexahedral) discretizations. We observe that for Lagrange-type elements, while linear tetrahedral elements perform poorly, quadratic tetrahedral elements perform equally well or outperform hexahedral elements for our set of problems and currently available mesh generation algorithms. This observation suggests that for common problems in structural analysis, thermal analysis, and low Reynolds number flows, high-quality results can be obtained with unstructured tetrahedral meshes, which can be created robustly and automatically. We release the description of the benchmark problems, meshes, and reference implementation of our testing infrastructure to enable statistically significant comparisons between different FE methods, which we hope will be helpful in the development of new meshing and FEA techniques.
more »
« less
Propagating Geometry Information to Finite Element Computations
The traditional workflow in continuum mechanics simulations is that a geometry description —for example obtained using Constructive Solid Geometry (CSG) or Computer Aided Design (CAD) tools—forms the input for a mesh generator. The mesh is then used as the sole input for the finite element, finite volume, and finite difference solver, which at this point no longer has access to the original, “underlying” geometry. However, many modern techniques—for example, adaptive mesh refinement and the use of higher order geometry approximation methods—really do need information about the underlying geometry to realize their full potential. We have undertaken an exhaustive study of where typical finite element codes use geometry information, with the goal of determining what information geometry tools would have to provide. Our study shows that nearly all geometry-related needs inside the simulators can be satisfied by just two “primitives”: elementary queries posed by the simulation software to the geometry description. We then show that it is possible to provide these primitives in all of the frequently used ways in which geometries are described in common industrial workflows, and illustrate our solutions using a number of examples.
more »
« less
- PAR ID:
- 10349706
- Date Published:
- Journal Name:
- ACM Transactions on Mathematical Software
- Volume:
- 47
- Issue:
- 4
- ISSN:
- 0098-3500
- Page Range / eLocation ID:
- 1 to 30
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT In fatigue evaluation of welded structures, explicit weld representations in finite element (FE) models are needed for reliably capturing stress or strain concentration behaviors at critical weld locations, for example, weld toe or weld root, in using widely accepted traction structural stress or extrapolation hot‐spot stress methods. The laborious efforts needed for generating weld geometry have been a major challenge for fatigue evaluation of complex structures containing many welds. In this paper, we present a user‐defined fillet‐weld element formulation and its numerical implementation for computing traction mesh‐insensitive structural stresses. The fillet‐weld element is formulated by connecting several linear four‐nodes Mindlin shell elements around weld region as a user‐defined element. The resulting elements can be directly used with major commercial FE codes through an available user subroutine interface. A number of well‐documented fillet‐welded components are then used for validating the accuracy and robustness of the developed fillet‐weld elements.more » « less
-
Faithful, accurate, and successful cardiac biomechanics and electrophysiological simulations require patient-specific geometric models of the heart. Since the cardiac geometry consists of highly-curved boundaries, the use of high-order meshes with curved elements would ensure that the various curves and features present in the cardiac geometry are well-captured and preserved in the corresponding mesh. Most other existing mesh generation techniques require computer-aided design files to represent the geometric boundary, which are often not available for biomedical applications. Unlike such methods, our technique takes a high-order surface mesh, generated from patient medical images, as input and generates a high-order volume mesh directly from the curved surface mesh. In this paper, we use our direct high-order curvilinear tetrahedral mesh generation method [1] to generate several second-order cardiac meshes. Our meshes include the left ventricle myocardia of a healthy heart and hearts with dilated and hypertrophic cardiomyopathy. We show that our high-order cardiac meshes do not contain inverted elements and are of sufficiently high quality for use in cardiac finite element simulations.more » « less
-
Abstract Immersed finite element methods provide a convenient analysis framework for problems involving geometrically complex domains, such as those found in topology optimization and microstructures for engineered materials. However, their implementation remains a major challenge due to, among other things, the need to apply nontrivial stabilization schemes and generate custom quadrature rules. This article introduces the robust and computationally efficient algorithms and data structures comprising an immersed finite element preprocessing framework. The input to the preprocessor consists of a background mesh and one or more geometries defined on its domain. The output is structured into groups of elements with custom quadrature rules formatted such that common finite element assembly routines may be used without or with only minimal modifications. The key to the preprocessing framework is the construction of material topology information, concurrently with the generation of a quadrature rule, which is then used to perform enrichment and generate stabilization rules. While the algorithmic framework applies to a wide range of immersed finite element methods using different types of meshes, integration, and stabilization schemes, the preprocessor is presented within the context of the extended isogeometric analysis. This method utilizes a structured B-spline mesh, a generalized Heaviside enrichment strategy considering the material layout within individual basis functions’ supports, and face-oriented ghost stabilization. Using a set of examples, the effectiveness of the enrichment and stabilization strategies is demonstrated alongside the preprocessor’s robustness in geometric edge cases. Additionally, the performance and parallel scalability of the implementation are evaluated.more » « less
-
We present the lowest-order hybridizable discontinuous Galerkin schemes with numerical integration (quadrature), denoted as HDG-P0 for the reaction-diffusion equation and the generalized Stokes equations on conforming simplicial meshes in two- and three-dimensions. Here by lowest order, we mean that the (hybrid) finite element space for the global HDG facet degrees of freedom (DOFs) is the space of piecewise constants on the mesh skeleton. A discontinuous piecewise linear space is used for the approximation of the local primal unknowns. We give the optimal a priori error analysis of the proposed HDG-P0 schemes, which hasn’t appeared in the literature yet for HDG discretizations as far as numerical integration is concerned. Moreover, we propose optimal geometric multigrid preconditioners for the statically condensed HDG-P0 linear systems on conforming simplicial meshes. In both cases, we first establish the equivalence of the statically condensed HDG system with a (slightly modified) nonconforming Crouzeix–Raviart (CR) discretization, where the global (piecewise-constant) HDG finite element space on the mesh skeleton has a natural one-to-one correspondence to the nonconforming CR (piecewise-linear) finite element space that live on the whole mesh. This equivalence then allows us to use the well-established nonconforming geometry multigrid theory to precondition the condensed HDG system. Numerical results in two- and three-dimensions are presented to verify our theoretical findings.more » « less
An official website of the United States government

