Obtaining an accurate specification of the access control policy enforced by an application is essential in ensuring that it meets our security/privacy expectations. This is especially important as many of real-world applications handle a large amount and variety of data objects that may have different applicable policies. We investigate the problem of automated learning of access control policies from web applications. The existing research on mining access control policies has mainly focused on developing algorithms for inferring correct and concise policies from low-level authorization information. However, little has been done in terms of systematically gathering the low-level authorization data and applications' data models that are prerequisite to such a mining process. In this paper, we propose a novel black-box approach to inferring those prerequisites and discuss our initial observations on employing such a framework in learning policies from real-world web applications.
more »
« less
Learning Relationship-Based Access Control Policies from Black-Box Systems
Access control policies are crucial in securing data in information systems. Unfortunately, often times, such policies are poorly documented, and gaps between their specification and implementation prevent the system users, and even its developers, from understanding the overall enforced policy of a system. To tackle this problem, we propose the first of its kind systematic approach for learning the enforced authorizations from a target system by interacting with and observing it as a black box. The black-box view of the target system provides the advantage of learning its overall access control policy without dealing with its internal design complexities. Furthermore, compared to the previous literature on policy mining and policy inference, we avoid exhaustive exploration of the authorization space by minimizing our observations. We focus on learning relationship-based access control (ReBAC) policy, and show how we can construct a deterministic finite automaton (DFA) to formally characterize such an enforced policy. We theoretically analyze our proposed learning approach by studying its termination, correctness, and complexity. Furthermore, we conduct extensive experimental analysis based on realistic application scenarios to establish its cost, quality of learning, and scalability in practice.
more »
« less
- Award ID(s):
- 2047623
- PAR ID:
- 10349715
- Date Published:
- Journal Name:
- ACM Transactions on Privacy and Security
- Volume:
- 25
- Issue:
- 3
- ISSN:
- 2471-2566
- Page Range / eLocation ID:
- 1 to 36
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Emerging microservices-based workloads introduce new security risks in today's data centers as attacks can propagate laterally within the data center relatively easily by exploiting cross-service dependencies. As countermeasures for such attacks, traditional perimeterization approaches, such as network-endpoint-based access control, do not fare well in highly dynamic microservices environments (especially considering the management complexity, scalability and policy granularity of these earlier approaches). In this paper, we propose eZTrust, a network-independent perimeterization approach for microservices. eZTrust allows data center tenants to express access control policies based on fine-grained workload identities, and enables data center operators to enforce such policies reliably and efficiently in a purely network-independent fashion. To this end, we leverage eBPF, the extended Berkeley Packet Filter, to trace authentic workload identities and apply per-packet tagging and verification. We demonstrate the feasibility of our approach through extensive evaluation of our proof-of-concept prototype implementation. We find that, when comparable policies are enforced, eZTrust incurs 2--5 times lower packet latency and 1.5--2.5 times lower CPU overhead than traditional perimeterization schemes.more » « less
-
The physical design of a robot and the policy that controls its motion are inherently coupled, and should be determined according to the task and environment. In an increasing number of applications, data-driven and learning-based approaches, such as deep reinforcement learning, have proven effective at designing control policies. For most tasks, the only way to evaluate a physical design with respect to such control policies is empirical---i.e., by picking a design and training a control policy for it. Since training these policies is time-consuming, it is computationally infeasible to train separate policies for all possible designs as a means to identify the best one. In this work, we address this limitation by introducing a method that jointly optimizes over the physical design and control network. Our approach maintains a distribution over designs and uses reinforcement learning to optimize a control policy to maximize expected reward over the design distribution. We give the controller access to design parameters to allow it to tailor its policy to each design in the distribution. Throughout training, we shift the distribution towards higher-performing designs, eventually converging to a design and control policy that are jointly optimal. We evaluate our approach in the context of legged locomotion, and demonstrate that it discovers novel designs and walking gaits, outperforming baselines across different settings.more » « less
-
Relationship-based access control (ReBAC) policies often rely solely on positive authorization rules, implicitly denying all other requests by default. However, many scenarios require explicitly stating negative authorization rules to capture exceptions or special restrictions that are not naturally enforced by deny-by-default semantics. This work presents a systematic method to mine ReBAC policies that integrate both positive and negative authorization rules from observed authorizations. We formalize the mining problem, show its NP-hardness, and develop an approach that identifies minimal policies while accurately reflecting observed access decisions. We demonstrate the feasibility and effectiveness of our proposed approach through a set of experiments. Our experimental evaluations on representative datasets demonstrate that including negative rules leads to more concise and semantically complete policies, confirming the necessity of explicit negative authorizations in complex access control settings.more » « less
-
Moving Target Defense (MTD) has been introduced as a new game changer strategy in cybersecurity to strengthen defenders and conversely weaken adversaries. The successful implementation of an MTD system can be influenced by several factors including the effectiveness of the employed technique, the deployment strategy, the cost of the MTD implementation, and the impact from the enforced security policies. Several efforts have been spent on introducing various forms of MTD techniques. However, insufficient research work has been conducted on cost and policy analysis and more importantly the selection of these policies in an MTD-based setting. This poster paper proposes a Markov Decision Process (MDP) modeling-based approach to analyze security policies and further select optimal policies for moving target defense implementation and deployment. The adapted value iteration method would solve the Bellman Optimality Equation for optimal policy selection for each state of the system. The results of some simulations indicate that such modeling can be used to analyze the impact of costs of possible actions towards the optimal policies.more » « less
An official website of the United States government

