Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Using access control policy rules with deny effects (i.e., negative authorization) can be preferred to using complemented conditions in the rules as they are often easier to comprehend in the context of large policies. However, the two constructs have different impacts on the expressiveness of a rule-based access control model. We investigate whether policies expressible using complemented conditions can be expressed using deny rules instead. The answer to this question is not always affirmative. In this paper, we propose a practical approach to address this problem for a given policy. In particular, we develop theoretical results that allow us to pose the problem as a set of queries to an SAT solver. Our experimental results using an off-the-shelf SAT solver demonstrate the feasibility of our approach and offer insights into its performance based on access control policies from multiple domains.more » « lessFree, publicly-accessible full text available June 24, 2025
-
Obtaining an accurate specification of the access control policy enforced by an application is essential in ensuring that it meets our security/privacy expectations. This is especially important as many of real-world applications handle a large amount and variety of data objects that may have different applicable policies. We investigate the problem of automated learning of access control policies from web applications. The existing research on mining access control policies has mainly focused on developing algorithms for inferring correct and concise policies from low-level authorization information. However, little has been done in terms of systematically gathering the low-level authorization data and applications' data models that are prerequisite to such a mining process. In this paper, we propose a novel black-box approach to inferring those prerequisites and discuss our initial observations on employing such a framework in learning policies from real-world web applications.more » « less
-
Access control policies are crucial in securing data in information systems. Unfortunately, often times, such policies are poorly documented, and gaps between their specification and implementation prevent the system users, and even its developers, from understanding the overall enforced policy of a system. To tackle this problem, we propose the first of its kind systematic approach for learning the enforced authorizations from a target system by interacting with and observing it as a black box. The black-box view of the target system provides the advantage of learning its overall access control policy without dealing with its internal design complexities. Furthermore, compared to the previous literature on policy mining and policy inference, we avoid exhaustive exploration of the authorization space by minimizing our observations. We focus on learning relationship-based access control (ReBAC) policy, and show how we can construct a deterministic finite automaton (DFA) to formally characterize such an enforced policy. We theoretically analyze our proposed learning approach by studying its termination, correctness, and complexity. Furthermore, we conduct extensive experimental analysis based on realistic application scenarios to establish its cost, quality of learning, and scalability in practice.more » « less
-
Mining algorithms for relationship-based access control policies produce policies composed of relationship-based patterns that justify the input authorizations according to a given system graph. The correct functioning of a policy mining algorithm is typically tested based on experimental evaluations, in each of which the miner is presented with a set of authorizations and a system graph, and is expected to produce the corresponding ground truth policy. In this paper, we propose formal properties that must exist between the system graph and the ground truth policy in an evaluation test so that the miner is challenged to produce the exact ground truth policy. We show that failure to verify these properties in the experiment leads to inadequate evaluation, i.e., not truly testing whether the miner can handle the complexity of the ground truth policy. We also argue that following these properties would provide a computational advantage in the evaluations. We propose algorithms to identify and correct violations of these properties in system graphs. We also present our observations regarding these properties and their enforcement using a set of experimental studies.more » « less