skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Light Microscopy Outreach as an Introduction to Scientific Concepts for Students in Under-Resourced Schools Across the Globe
Light microscopy provides a window into another world that is not visible to the unaided eye. Because of this and its importance in biological discoveries, the light microscope is an essential tool for scientific studies. It can also be used with a variety of easily obtained specimens to provide dramatic demonstrations of previously unknown features of common plants and animals. Thus, one way to interest young people in science is to start with an introduction to light microscopy. This is an especially effective strategy for individuals who attend less advantaged or under-resourced schools, as they may not have been previously exposed to scientific concepts in their classes. However, introducing light microscopy lessons in the classroom can be challenging because of the high cost of light microscopes, even those that are relatively basic, in addition to their usual large size. Efforts are underway by our laboratory in collaboration with the Biophysical Society (BPS) to introduce young people to light microscopy using small, easy-to-assemble wooden microscopes developed by Echo Laboratories. The microscopes are available online as low-cost kits ($10 each with shipping), each consisting of 19 parts printed onto an 81⁄2 x 11 inch sheet of light-weight wood (Fig. 1). After punching out the pieces, they can be assembled into a microscope with a moveable stage and a low-power lens, also provided in the kit (Fig. 2). Photos taken with a cell phone through the microscope lens can give magnifications of ~16-18x, or higher. At these magnifications, features of specimens that are not visible to the unaided eye can be easily observed, e.g., small hairs on the margins of leaves or lichens [1]. As a member of the BPS Education Committee, one of us (SAE) wrote a Lesson Plan on Light Microscopy specifically for use with the wooden microscopes. SAE was also able to obtain a gift of 500 wooden microscope kits for the BPS from Echo Laboratories and Chroma Technology Corp in 2016. The wooden microscope kits, together with the lesson plan, have provided the materials for our present outreach efforts. Rather than giving out the wooden microscope kits to individuals, the BPS asked the Education Committee to maximize the impact of the gift by distributing the microscopes with the Lesson Plan on Light Microscopy to teachers, e.g., through teachers’ workshops or outreach sessions. This strategy was devised to enable the Society to reach a larger number of young people than by giving the microscopes to individuals. The Education Committee first evaluated the microscopes as a tool to introduce students to scientific concepts by providing microscopes to a BPS member at the National University of Colombia who conducted a workshop on Sept 19-24, 2016 in Tumaco, Columbia. During the workshop, which involved 120 high school girls and 80 minority students, including Afro-Colombian and older students, the students built the wooden microscopes and examined specimens, and compared the microscopes to a conventional light microscope. Assembling the wooden microscopes was found to be a useful procedure that was similar to a scientific protocol, and encouraged young girls and older students to participate in science. This was especially promising in Colombia, where there are few women in science and little effort to increase women in STEM fields. Another area of outreach emerged recently when one of us, USP, an undergraduate student at Duke University, who was taught by SAE how to assemble the wooden microscopes and how to use the lesson plan, took three wooden microscopes on a visit to her family in Bangalore, India in summer 2018 [2]. There she organized and led three sessions in state run, under-resourced government schools, involving classes of ~25-40 students each. This was very successful – the students enjoyed learning about the microscopes and building them, and the science teachers were interested in expanding the sessions to other government schools. USP taught the teachers how to assemble and use the microscopes and gave the teachers the microscopes and lesson plan, which is also available to the public at the BPS web site. She also met with a founder of the organization, Whitefield Rising, which is working to improve teaching in government schools, and taught her and several volunteers how to assemble the microscopes and conduct the sessions. The Whitefield Rising members have been able to conduct nine further sessions in Bangalore over the past ~18 months (Fig. 3), using microscope kits provided to them by the BPS. USP has continued to work with members of the Whitefield Rising group during her summer and winter breaks on visits to Bangalore. Recently she has been working with another volunteer group that has expanded the outreach efforts to New Delhi. The light microscopy outreach that our laboratory is conducting in India in collaboration with the BPS is having a positive impact because we have been able to develop a partnership with volunteers in Bangalore and New Delhi. The overall goal is to enhance science education globally, especially in less advantaged schools, by providing a low-cost microscope that can be used to introduce students to scientific concepts.  more » « less
Award ID(s):
1660924
PAR ID:
10349738
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Microscopy and microanalysis
ISSN:
1431-9276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Baldwin, Amy; Danns, Donna; Howe, Chad (Ed.)
    In this presentation, we will do a longitudinal comparison of science lesson plan implementations from a group of preservice teachers’ experiences during a STEM-based summer program to their experiences during their Fall semester in their practice in regular elementary and middle schools. On the one hand, their summer experiences consisted of learning and implementing science and engineering lesson plans using culturally and linguistically sustaining pedagogies, which was an intensive and guided opportunity led by university faculty on one of the university campuses. In this experience, preservice teachers collaborated with peers for 15 days to implement and evaluate their teaching of science activities in a flexible environment. On the other hand, preservice teachers have their required practice in schools during senior year to implement lesson plans and become familiar with the regular tasks of an in-service teacher. This comparison is part of the research conducted by the Culturally Sustaining Pedagogies in Science for English Language Learners project funded by the National Science Foundation and focuses on providing the necessary pedagogical tools to teach STEM to multilingual students (in our case, from Latin American countries). We conclude with a series of recommendations for preservice teachers and in-service teachers who have multilingual and emerging bilingual learners in their classrooms. 
    more » « less
  2. Abstract Much of our understanding of cell and tissue development, structure, and function stems from fluorescence microscopy. The acquisition of colorful and glowing images engages and excites users ranging from seasoned microscopists to STEM students. Fluorescence microscopes range in cost from several thousand to several hundred thousand US dollars. Therefore, the use of fluorescence microscopy is typically limited to well-funded institutions and biotechnology companies, research core facilities, and medical laboratories, but is financially impractical at many universities and colleges, primary and secondary schools (K-12), and in science outreach settings. In this study, we developed and characterized components that when used in combination with a smartphone or tablet, perform fluorescence microscopy at a cost of less than $50 US dollars per unit. We re-purposed recreational LED flashlights and theater stage lighting filters to enable viewing of green and red fluorophores including EGFP, DsRed, mRFP, and mCherry on a simple-to-build frame made of wood and plexiglass. These devices, which we refer to as glowscopes, were capable of 10 µm resolution, imaging fluorescence in live specimens, and were compatible with all smartphone and tablet models we tested. In comparison to scientific-grade fluorescence microscopes, glowscopes may have limitations to sensitivity needed to detect dim fluorescence and the inability to resolve subcellular structures. We demonstrate capability of viewing fluorescence within zebrafish embryos, including heart rate, rhythmicity, and regional anatomy of the central nervous system. Due to the low cost of individual glowscope units, we anticipate this device can help to equip K-12, undergraduate, and science outreach classrooms with fleets of fluorescence microscopes that can engage students with hands-on learning activities. 
    more » « less
  3. null (Ed.)
    The Online Electron Microscopy Platform makes electron microscopy education accessible by combining simulation-based practice with a range of educational content. Students learn how to operate electron microscopes by using virtual microscopes that precisely simulate the functions of real microscopes. Built as a web application, the platform can be used by an unlimited number of people and at any time. This platform reduces the time needed for training users to operate a real microscope. By preparing students in STEM disciplines to use electron microscopes, the system helps them acquire the skills they need to succeed in the modern workforce. 
    more » « less
  4. According to an ecological affordances perspective, any static curriculum has a set of affordances, and differences in teachers, students, and the teaching environment change how those affordances are viewed and used. Therefore, teaching is a relationship between the curriculum, the teacher, and the students. As such, it is not only possible but expected that a teacher will diverge from the details of a lesson plan to better accommodate the needs of themselves as a teacher and their students as learners. In this study, we report on a mixed-methods investigation that explores the different ways upper-elementary and middle-school (7- 13 y.o. students) teachers implement the Scratch-based TIPP&SEE learning strategy and the reasoning for their approaches. As expected, we find that teachers across grade levels often deviate from lesson plan details to cater to their own classrooms. For example, teachers serving younger grades were far more likely to keep scaffolds that lesson plans suggest removing. The varied degree of deviation suggests that the repeated use of a learning strategy, alongside lesson plans that present a variety of scaffolded implementations, is beneficial in enabling teachers to adapt lesson content to serve the needs of their specific classroom. 
    more » « less
  5. In this paper, we explore how standards-based Making activities offer opportunities for teachers to address interdisciplinary concepts and encourage students to tinker, collaborate, create, and design. This qualitative study draws on results from a two-year, NSF-funded research project that involved the integration of standards-based Mobile Maker Kits into 15 elementary schools within a suburban-rural Southern school district. Specifically, we examine teachers’ goals for using Mobile Maker Kits, as well as how the hook, brainstorm, prototype, share, synthesize framework supported them in integrating Making into their existing standards and curricula. 
    more » « less