skip to main content


Title: Latent space models for multiplex networks with shared structure
Summary Latent space models are frequently used for modelling single-layer networks and include many popular special cases, such as the stochastic block model and the random dot product graph. However, they are not well developed for more complex network structures, which are becoming increasingly common in practice. In this article we propose a new latent space model for multiplex networks, i.e., multiple heterogeneous networks observed on a shared node set. Multiplex networks can represent a network sample with shared node labels, a network evolving over time, or a network with multiple types of edges. The key feature of the proposed model is that it learns from data how much of the network structure is shared between layers and pools information across layers as appropriate. We establish identifiability, develop a fitting procedure using convex optimization in combination with a nuclear-norm penalty, and prove a guarantee of recovery for the latent positions provided there is sufficient separation between the shared and the individual latent subspaces. We compare the model with competing methods in the literature on simulated networks and on a multiplex network describing the worldwide trade of agricultural products.  more » « less
Award ID(s):
1916222 2052918
NSF-PAR ID:
10349744
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Biometrika
ISSN:
0006-3444
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The complex relationships in an urban environment can be captured through multiple interrelated sources of data. These relationships form multilayer networks, that are also spatially embedded in an area, could be used to identify latent patterns. In this work, we propose a low-dimensional representation learning approach that considers multiple layers of a multiplex network simultaneously and is able to encode similarities between nodes across different layers. In particular, we introduce a novel neural network architecture to jointly learn low-dimensional representations of each network node from multiple layers of a network. This process simultaneously fuses knowledge of various data sources to better capture the characteristics of the nodes. To showcase the proposed method we focus on the problem of identifying the functionality of an urban region. Using a variety of public data sources for New York City, we design a multilayer network and evaluate our approach. Our results indicate that our proposed approach can improve the accuracy of traditional approaches in an unsupervised task. 
    more » « less
  2. null (Ed.)
    Multiplex networks are complex graph structures in which a set of entities are connected to each other via multiple types of relations, each relation representing a distinct layer. Such graphs are used to investigate many complex biological, social, and technological systems. In this work, we present a novel semi-supervised approach for structure-aware representation learning on multiplex networks. Our approach relies on maximizing the mutual information between local node-wise patch representations and label correlated structure-aware global graph representations to model the nodes and cluster structures jointly. Specifically, it leverages a novel cluster-aware, node-contextualized global graph summary generation strategy for effective joint-modeling of node and cluster representations across the layers of a multiplex network. Empirically, we demonstrate that the proposed architecture outperforms state-of-the-art methods in a range of tasks: classification, clustering, visualization, and similarity search on seven real-world multiplex networks for various experiment settings. 
    more » « less
  3. null (Ed.)
    Networks have been widely used to represent the relations between objects such as academic networks and social networks, and learning embedding for networks has thus garnered plenty of research attention. Self-supervised network representation learning aims at extracting node embedding without external supervision. Recently, maximizing the mutual information between the local node embedding and the global summary (e.g. Deep Graph Infomax, or DGI for short) has shown promising results on many downstream tasks such as node classification. However, there are two major limitations of DGI. Firstly, DGI merely considers the extrinsic supervision signal (i.e., the mutual information between node embedding and global summary) while ignores the intrinsic signal (i.e., the mutual dependence between node embedding and node attributes). Secondly, nodes in a real-world network are usually connected by multiple edges with different relations, while DGI does not fully explore the various relations among nodes. To address the above-mentioned problems, we propose a novel framework, called High-order Deep Multiplex Infomax (HDMI), for learning node embedding on multiplex networks in a self-supervised way. To be more specific, we first design a joint supervision signal containing both extrinsic and intrinsic mutual information by high-order mutual information, and we propose a High- order Deep Infomax (HDI) to optimize the proposed supervision signal. Then we propose an attention based fusion module to combine node embedding from different layers of the multiplex network. Finally, we evaluate the proposed HDMI on various downstream tasks such as unsupervised clustering and supervised classification. The experimental results show that HDMI achieves state-of-the-art performance on these tasks. 
    more » « less
  4. null (Ed.)
    Learning low-dimensional representations of graphs has facilitated the use of traditional machine learning techniques to solving classic network analysis tasks such as link prediction, node classification, community detection, etc. However, to date, the vast majority of these learning tasks are focused on traditional single-layer/unimodal networks and largely ignore the case of multiplex networks. A multiplex network is a suitable structure to model multi-dimensional real-world complex systems. It consists of multiple layers where each layer represents a different relationship among the network nodes. In this work, we propose MUNEM, a novel approach for learning a low-dimensional representation of a multiplex network using a triplet loss objective function. In our approach, we preserve the global structure of each layer, while at the same time fusing knowledge among different layers during the learning process. We evaluate the effectiveness of our proposed method by testing and comparing on real-world multiplex networks from different domains, such as collaboration network, protein-protein interaction network, online social network. Finally, in order to deliberately examine the effect of our model’s parameters we conduct extensive experiments on synthetic multiplex networks. 
    more » « less
  5. Complex contagion models have been developed to understand a wide range of social phenomena such as adoption of cultural fads, the diffusion of belief, norms, and innovations in social networks, and the rise of collective action to join a riot. Most existing works focus on contagions where individuals’ states are represented by binary variables, and propagation takes place over a single isolated network. However, characterization of an individual’s standing on a given matter as a binary state might be overly simplistic as most of our opinions, feelings, and perceptions vary over more than two states. Also, most real-world contagions take place over multiple networks (e.g., Twitter and Facebook) or involve multiplex networks where individuals engage in different types of relationships (e.g., co-worker, family, etc.). To this end, this paper studies multi-stage complex contagions that take place over multi-layer or multiplex networks. Under a linear threshold based contagion model, we first give analytic results for the expected size of global cascades, i.e., cases where a randomly chosen node can initiate a propagation that eventually reaches a positive fraction of the whole population. Then, analytic results are confirmed by an extensive numerical study. In addition, we demonstrate how the dynamics of complex contagions is affected by the structural properties of the networks. In particular, we reveal an interesting connection between the assortativity of a network and the impact of hyper-active nodes on the cascade size. 
    more » « less