skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Particle Reacceleration by Turbulence and Radio Constraints on Multimessenger High-energy Emission from the Coma Cluster
Abstract Galaxy clusters are considered to be gigantic reservoirs of cosmic rays (CRs). Some of the clusters are found with extended radio emission, which provides evidence for the existence of magnetic fields and CR electrons in the intra-cluster medium. The mechanism of radio halo (RH) emission is still under debate, and it has been believed that turbulent reacceleration plays an important role. In this paper, we study the reacceleration of CR protons and electrons in detail by numerically solving the Fokker–Planck equation, and show how radio and gamma-ray observations can be used to constrain CR distributions and resulting high-energy emission for the Coma cluster. We take into account the radial diffusion of CRs and follow the time evolution of their one-dimensional distribution, by which we investigate the radial profile of the CR injection that is consistent with the observed RH surface brightness. We find that the required injection profile is nontrivial, depending on whether CR electrons have a primary or secondary origin. Although the secondary CR electron scenario predicts larger gamma-ray and neutrino fluxes, it is in tension with the observed RH spectrum for hard injection indexes, α < 2.45. This tension is relaxed if the turbulent diffusion of CRs is much less efficient than the fiducial model, or the reacceleration is more efficient for lower-energy CRs. In both the secondary and primary scenario, we find that galaxy clusters can make a sizable contribution to the all-sky neutrino intensity if the CR energy spectrum is nearly flat.  more » « less
Award ID(s):
1908689
PAR ID:
10349767
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
922
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
190
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Galaxy clusters have the potential to accelerate cosmic rays (CRs) to ultrahigh energies via accretion shocks or embedded CR acceleration sites. The CRs with energies below the Hillas condition will be confined within the cluster and eventually interact with the intracluster medium gas to produce secondary neutrinos and gamma rays. Using 9.5 yr of muon neutrino track events from the IceCube Neutrino Observatory, we report the results of a stacking analysis of 1094 galaxy clusters with masses ≳10 14 M ⊙ and redshifts between 0.01 and ∼1 detected by the Planck mission via the Sunyaev–Zel’dovich effect. We find no evidence for significant neutrino emission and report upper limits on the cumulative unresolved neutrino flux from massive galaxy clusters after accounting for the completeness of the catalog up to a redshift of 2, assuming three different weighting scenarios for the stacking and three different power-law spectra. Weighting the sources according to mass and distance, we set upper limits at a 90% confidence level that constrain the flux of neutrinos from massive galaxy clusters (≳10 14 M ⊙ ) to be no more than 4.6% of the diffuse IceCube observations at 100 TeV, assuming an unbroken E −2.5 power-law spectrum. 
    more » « less
  2. Abstract Subsonic, compressive turbulence transfers energy to cosmic rays (CRs), a process known as nonresonant reacceleration. It is often invoked to explain the observed ratios of primary to secondary CRs at ∼GeV energies, assuming wholly diffusive CR transport. However, such estimates ignore the impact of CR self-confinement and streaming. We study these issues in stirring box magnetohydrodynamic (MHD) simulations using Athena++, with field-aligned diffusive and streaming CR transport. For diffusion only, we find CR reacceleration rates in good agreement with analytic predictions. When streaming is included, reacceleration rates depend on plasmaβ. Due to streaming-modified phase shifts between CR and gas variables, they are slower than canonical reacceleration rates in low-βenvironments like the interstellar medium but remain unchanged in high-βenvironments like the intracluster medium. We also quantify the streaming energy-loss rate in our simulations. For sub-Alfvénic turbulence, it is resolution dependent (hence unconverged in large-scale simulations) and heavily suppressed compared to the isotropic loss ratevA· ∇PCR/PCR∼vA/L0, due to misalignment between the mean field and isotropic CR gradients. Unlike acceleration efficiencies, CR losses are almost independent of magnetic field strength overβ∼ 1–100 and are, therefore, not the primary factor behind lower acceleration rates when streaming is included. While this paper is primarily concerned with how turbulence affects CRs, in a follow-up paper we consider how CRs affect turbulence by diverting energy from the MHD cascade, altering the pathway to gas heating and steepening the turbulent spectrum. 
    more » « less
  3. null (Ed.)
    The presence of relativistic electrons within the diffuse gas phase of galaxy clusters is now well established, thanks to deep radio observations obtained over the last decade, but their detailed origin remains unclear. Cosmic ray protons are also expected to accumulate during the formation of clusters. They may explain part of the radio signal and would lead to γ -ray emission through hadronic interactions within the thermal gas. Recently, the detection of γ -ray emission has been reported toward the Coma cluster with Fermi -LAT. Assuming that this γ -ray emission arises essentially from pion decay produced in proton-proton collisions within the intracluster medium (ICM), we aim at exploring the implication of this signal on the cosmic ray content of the Coma cluster and comparing it to observations at other wavelengths. We use the MINOT software to build a physical model of the Coma cluster, which includes the thermal target gas, the magnetic field strength, and the cosmic rays, to compute the corresponding expected γ -ray signal. We apply this model to the Fermi -LAT data using a binned likelihood approach, together with constraints from X-ray and Sunyaev-Zel’dovich observations. We also consider contamination from compact sources and the impact of various systematic effects on the results. We confirm that a significant γ -ray signal is observed within the characteristic radius θ 500 of the Coma cluster, with a test statistic TS ≃ 27 for our baseline model. The presence of a possible point source (4FGL J1256.9+2736) may account for most of the observed signal. However, this source could also correspond to the peak of the diffuse emission of the cluster itself as it is strongly degenerate with the expected ICM emission, and extended models match the data better. Given the Fermi -LAT angular resolution and the faintness of the signal, it is not possible to strongly constrain the shape of the cosmic ray proton spatial distribution when assuming an ICM origin of the signal, but preference is found in a relatively flat distribution elongated toward the southwest, which, based on data at other wavelengths, matches the spatial distribution of the other cluster components well. Assuming that the whole γ -ray signal is associated with hadronic interactions in the ICM, we constrain the cosmic ray to thermal energy ratio within R 500 to X CRp = 1.79 −0.30 +1.11 % and the slope of the energy spectrum of cosmic rays to α = 2.80 −0.13 +0.67 ( X CRp = 1.06 −0.22 +0.96 % and α = 2.58 −0.09 +1.12 when including both the cluster and 4FGL J1256.9+2736 in our model). Finally, we compute the synchrotron emission associated with the secondary electrons produced in hadronic interactions assuming steady state. This emission is about four times lower than the overall observed radio signal (six times lower when including 4FGL J1256.9+2736), so that primary cosmic ray electrons or reacceleration of secondary electrons is necessary to explain the total emission. We constrain the amplitude of the primary to secondary electrons, or the required boost from reacceleration with respect to the steady state hadronic case, depending on the scenario, as a function of radius. Our results confirm that γ -ray emission is detected in the direction of the Coma cluster. Assuming that the emission is due to hadronic interactions in the intracluster gas, they provide the first quantitative measurement of the cosmic ray proton content in a galaxy cluster and its implication for the cosmic ray electron populations. 
    more » « less
  4. ABSTRACT We present the first simulations evolving resolved spectra of cosmic rays (CRs) from MeV–TeV energies (including electrons, positrons, (anti)protons, and heavier nuclei), in live kinetic-magnetohydrodynamics galaxy simulations with star formation and feedback. We utilize new numerical methods including terms often neglected in historical models, comparing Milky Way analogues with phenomenological scattering coefficients ν to Solar-neighbourhood [Local interstellar medium (LISM)] observations (spectra, B/C, e+/e−, $$\mathrm{\bar{p}}/\mathrm{p}$$, 10Be/9Be, ionization, and γ-rays). We show it is possible to reproduce observations with simple single-power-law injection and scattering coefficients (scaling with rigidity R), similar to previous (non-dynamical) calculations. We also find: (1) The circumgalactic medium in realistic galaxies necessarily imposes an $$\sim 10\,$$ kpc CR scattering halo, influencing the required ν(R). (2) Increasing the normalization of ν(R) re-normalizes CR secondary spectra but also changes primary spectral slopes, owing to source distribution and loss effects. (3) Diffusive/turbulent reacceleration is unimportant and generally sub-dominant to gyroresonant/streaming losses, which are sub-dominant to adiabatic/convective terms dominated by $$\sim 0.1-1\,$$ kpc turbulent/fountain motions. (4) CR spectra vary considerably across galaxies; certain features can arise from local structure rather than transport physics. (5) Systematic variation in CR ionization rates between LISM and molecular clouds (or Galactic position) arises naturally without invoking alternative sources. (6) Abundances of CNO nuclei require most CR acceleration occurs around when reverse shocks form in SNe, not in OB wind bubbles or later Sedov–Taylor stages of SNe remnants. 
    more » « less
  5. ABSTRACT There is considerable evidence for widespread subsonic turbulence in galaxy clusters, most notably from Hitomi. Turbulence is often invoked to offset radiative losses in cluster cores, both by direct dissipation and by enabling turbulent heat diffusion. However, in a stratified medium, buoyancy forces oppose radial motions, making turbulence anisotropic. This can be quantified via the Froude number Fr, which decreases inward in clusters as stratification increases. We exploit analogies with MHD turbulence to show that wave–turbulence interactions increase cascade times and reduce dissipation rates ϵ ∝ Fr. Equivalently, for a given energy injection/dissipation rate ϵ, turbulent velocities u must be higher compared to Kolmogorov scalings. High-resolution hydrodynamic simulations show excellent agreement with the ϵ ∝ Fr scaling, which sets in for Fr ≲ 0.1. We also compare previously predicted scalings for the turbulent diffusion coefficient D ∝ Fr2 and find excellent agreement, for Fr ≲ 1. However, we find a different normalization, corresponding to stronger diffusive suppression by more than an order of magnitude. Our results imply that turbulent diffusion is more heavily suppressed by stratification, over a much wider radial range, than turbulent dissipation. Thus, the latter potentially dominates. Furthermore, this shift implies significantly higher turbulent velocities required to offset cooling, compared to previous models. These results are potentially relevant to turbulent metal diffusion in the galaxy groups and clusters (which is likewise suppressed), and to planetary atmospheres. 
    more » « less