skip to main content

Title: Particle Reacceleration by Turbulence and Radio Constraints on Multimessenger High-energy Emission from the Coma Cluster
Abstract Galaxy clusters are considered to be gigantic reservoirs of cosmic rays (CRs). Some of the clusters are found with extended radio emission, which provides evidence for the existence of magnetic fields and CR electrons in the intra-cluster medium. The mechanism of radio halo (RH) emission is still under debate, and it has been believed that turbulent reacceleration plays an important role. In this paper, we study the reacceleration of CR protons and electrons in detail by numerically solving the Fokker–Planck equation, and show how radio and gamma-ray observations can be used to constrain CR distributions and resulting high-energy emission for the Coma cluster. We take into account the radial diffusion of CRs and follow the time evolution of their one-dimensional distribution, by which we investigate the radial profile of the CR injection that is consistent with the observed RH surface brightness. We find that the required injection profile is nontrivial, depending on whether CR electrons have a primary or secondary origin. Although the secondary CR electron scenario predicts larger gamma-ray and neutrino fluxes, it is in tension with the observed RH spectrum for hard injection indexes, α < 2.45. This tension is relaxed if the turbulent diffusion of CRs more » is much less efficient than the fiducial model, or the reacceleration is more efficient for lower-energy CRs. In both the secondary and primary scenario, we find that galaxy clusters can make a sizable contribution to the all-sky neutrino intensity if the CR energy spectrum is nearly flat. « less
Authors:
; ;
Award ID(s):
1908689
Publication Date:
NSF-PAR ID:
10349767
Journal Name:
The Astrophysical Journal
Volume:
922
Issue:
2
Page Range or eLocation-ID:
190
ISSN:
0004-637X
Sponsoring Org:
National Science Foundation
More Like this
  1. The presence of relativistic electrons within the diffuse gas phase of galaxy clusters is now well established, thanks to deep radio observations obtained over the last decade, but their detailed origin remains unclear. Cosmic ray protons are also expected to accumulate during the formation of clusters. They may explain part of the radio signal and would lead to γ -ray emission through hadronic interactions within the thermal gas. Recently, the detection of γ -ray emission has been reported toward the Coma cluster with Fermi -LAT. Assuming that this γ -ray emission arises essentially from pion decay produced in proton-proton collisions within the intracluster medium (ICM), we aim at exploring the implication of this signal on the cosmic ray content of the Coma cluster and comparing it to observations at other wavelengths. We use the MINOT software to build a physical model of the Coma cluster, which includes the thermal target gas, the magnetic field strength, and the cosmic rays, to compute the corresponding expected γ -ray signal. We apply this model to the Fermi -LAT data using a binned likelihood approach, together with constraints from X-ray and Sunyaev-Zel’dovich observations. We also consider contamination from compact sources and the impact ofmore »various systematic effects on the results. We confirm that a significant γ -ray signal is observed within the characteristic radius θ 500 of the Coma cluster, with a test statistic TS ≃ 27 for our baseline model. The presence of a possible point source (4FGL J1256.9+2736) may account for most of the observed signal. However, this source could also correspond to the peak of the diffuse emission of the cluster itself as it is strongly degenerate with the expected ICM emission, and extended models match the data better. Given the Fermi -LAT angular resolution and the faintness of the signal, it is not possible to strongly constrain the shape of the cosmic ray proton spatial distribution when assuming an ICM origin of the signal, but preference is found in a relatively flat distribution elongated toward the southwest, which, based on data at other wavelengths, matches the spatial distribution of the other cluster components well. Assuming that the whole γ -ray signal is associated with hadronic interactions in the ICM, we constrain the cosmic ray to thermal energy ratio within R 500 to X CRp = 1.79 −0.30 +1.11 % and the slope of the energy spectrum of cosmic rays to α = 2.80 −0.13 +0.67 ( X CRp = 1.06 −0.22 +0.96 % and α = 2.58 −0.09 +1.12 when including both the cluster and 4FGL J1256.9+2736 in our model). Finally, we compute the synchrotron emission associated with the secondary electrons produced in hadronic interactions assuming steady state. This emission is about four times lower than the overall observed radio signal (six times lower when including 4FGL J1256.9+2736), so that primary cosmic ray electrons or reacceleration of secondary electrons is necessary to explain the total emission. We constrain the amplitude of the primary to secondary electrons, or the required boost from reacceleration with respect to the steady state hadronic case, depending on the scenario, as a function of radius. Our results confirm that γ -ray emission is detected in the direction of the Coma cluster. Assuming that the emission is due to hadronic interactions in the intracluster gas, they provide the first quantitative measurement of the cosmic ray proton content in a galaxy cluster and its implication for the cosmic ray electron populations.« less
  2. ABSTRACT

    We present the first simulations evolving resolved spectra of cosmic rays (CRs) from MeV–TeV energies (including electrons, positrons, (anti)protons, and heavier nuclei), in live kinetic-magnetohydrodynamics galaxy simulations with star formation and feedback. We utilize new numerical methods including terms often neglected in historical models, comparing Milky Way analogues with phenomenological scattering coefficients ν to Solar-neighbourhood [Local interstellar medium (LISM)] observations (spectra, B/C, e+/e−, $\mathrm{\bar{p}}/\mathrm{p}$, 10Be/9Be, ionization, and γ-rays). We show it is possible to reproduce observations with simple single-power-law injection and scattering coefficients (scaling with rigidity R), similar to previous (non-dynamical) calculations. We also find: (1) The circumgalactic medium in realistic galaxies necessarily imposes an $\sim 10\,$ kpc CR scattering halo, influencing the required ν(R). (2) Increasing the normalization of ν(R) re-normalizes CR secondary spectra but also changes primary spectral slopes, owing to source distribution and loss effects. (3) Diffusive/turbulent reacceleration is unimportant and generally sub-dominant to gyroresonant/streaming losses, which are sub-dominant to adiabatic/convective terms dominated by $\sim 0.1-1\,$ kpc turbulent/fountain motions. (4) CR spectra vary considerably across galaxies; certain features can arise from local structure rather than transport physics. (5) Systematic variation in CR ionization rates between LISM and molecular clouds (or Galactic position) arises naturally without invoking alternativemore »sources. (6) Abundances of CNO nuclei require most CR acceleration occurs around when reverse shocks form in SNe, not in OB wind bubbles or later Sedov–Taylor stages of SNe remnants.

    « less
  3. ABSTRACT We present and study a large suite of high-resolution cosmological zoom-in simulations, using the FIRE-2 treatment of mechanical and radiative feedback from massive stars, together with explicit treatment of magnetic fields, anisotropic conduction and viscosity (accounting for saturation and limitation by plasma instabilities at high β), and cosmic rays (CRs) injected in supernovae shocks (including anisotropic diffusion, streaming, adiabatic, hadronic and Coulomb losses). We survey systems from ultrafaint dwarf ($M_{\ast }\sim 10^{4}\, \mathrm{M}_{\odot }$, $M_{\rm halo}\sim 10^{9}\, \mathrm{M}_{\odot }$) through Milky Way/Local Group (MW/LG) masses, systematically vary uncertain CR parameters (e.g. the diffusion coefficient κ and streaming velocity), and study a broad ensemble of galaxy properties [masses, star formation (SF) histories, mass profiles, phase structure, morphologies, etc.]. We confirm previous conclusions that magnetic fields, conduction, and viscosity on resolved ($\gtrsim 1\,$ pc) scales have only small effects on bulk galaxy properties. CRs have relatively weak effects on all galaxy properties studied in dwarfs ($M_{\ast } \ll 10^{10}\, \mathrm{M}_{\odot }$, $M_{\rm halo} \lesssim 10^{11}\, \mathrm{M}_{\odot }$), or at high redshifts (z ≳ 1–2), for any physically reasonable parameters. However, at higher masses ($M_{\rm halo} \gtrsim 10^{11}\, \mathrm{M}_{\odot }$) and z ≲ 1–2, CRs can suppress SF and stellar masses by factorsmore »∼2–4, given reasonable injection efficiencies and relatively high effective diffusion coefficients $\kappa \gtrsim 3\times 10^{29}\, {\rm cm^{2}\, s^{-1}}$. At lower κ, CRs take too long to escape dense star-forming gas and lose their energy to collisional hadronic losses, producing negligible effects on galaxies and violating empirical constraints from spallation and γ-ray emission. At much higher κ CRs escape too efficiently to have appreciable effects even in the CGM. But around $\kappa \sim 3\times 10^{29}\, {\rm cm^{2}\, s^{-1}}$, CRs escape the galaxy and build up a CR-pressure-dominated halo which maintains approximate virial equilibrium and supports relatively dense, cool (T ≪ 106 K) gas that would otherwise rain on to the galaxy. CR ‘heating’ (from collisional and streaming losses) is never dominant.« less
  4. Abstract The heaviest elements in the universe are synthesized through rapid neutron capture ( r -process) in extremely neutron-rich outflows. Neutron star mergers were established as an important r -process source through the multimessenger observation of GW170817. Collapsars were also proposed as a potentially major source of heavy elements; however, this is difficult to probe through optical observations due to contamination by other emission mechanisms. Here we present observational constraints on r -process nucleosynthesis by collapsars based on radio follow-up observations of nearby long gamma-ray bursts (GRBs). We make the hypothesis that late-time radio emission arises from the collapsar wind ejecta responsible for forging r -process elements, and consider the constraints that can be set on this scenario using radio observations of a sample of Swift/Burst Alert Telescope GRBs located within 2 Gpc. No radio counterpart was identified in excess of the radio afterglow of the GRBs in our sample. This gives the strictest limit to the collapsar r -process contribution of ≲0.2 M ⊙ for GRB 060505 and GRB 05826, under the models we considered. Our results additionally constrain energy injection by a long-lived neutron star remnant in some of the considered GRBs. While our results are in tensionmore »with collapsars being the majority of r -process production sites, the ejecta mass and velocity profile of collapsar winds, and the emission parameters, are not yet well modeled. As such, our results are currently subject to large uncertainties, but further theoretical work could greatly improve them.« less
  5. Context.   Tycho ’s supernova remnant (SNR) is associated with the historical supernova (SN) event SN 1572 of Type Ia. The explosion occurred in a relatively clean environment, and was visually observed, providing an age estimate. This SNR therefore represents an ideal astrophysical test-bed for the study of cosmic-ray acceleration and related phenomena. A number of studies suggest that shock acceleration with particle feedback and very efficient magnetic-field amplification combined with Alfvénic drift are needed to explain the rather soft radio spectrum and the narrow rims observed in X-rays. Aims. We show that the broadband spectrum of Tycho ’s SNR can alternatively be well explained when accounting for stochastic acceleration as a secondary process. The re-acceleration of particles in the turbulent region immediately downstream of the shock should be efficient enough to impact particle spectra over several decades in energy. The so-called Alfvénic drift and particle feedback on the shock structure are not required in this scenario. Additionally, we investigate whether synchrotron losses or magnetic-field damping play a more profound role in the formation of the non-thermal filaments. Methods. We solved the full particle transport equation in test-particle mode using hydrodynamic simulations of the SNR plasma flow. The background magneticmore »field was either computed from the induction equation or follows analytic profiles, depending on the model considered. Fast-mode waves in the downstream region provide the diffusion of particles in momentum space. Results. We show that the broadband spectrum of Tycho can be well explained if magnetic-field damping and stochastic re-acceleration of particles are taken into account. Although not as efficient as standard diffusive shock acceleration, stochastic acceleration leaves its imprint on the particle spectra, which is especially notable in the emission at radio wavelengths. We find a lower limit for the post-shock magnetic-field strength ∼330  μ G, implying efficient amplification even for the magnetic-field damping scenario. Magnetic-field damping is necessary for the formation of the filaments in the radio range, while the X-ray filaments are shaped by both the synchrotron losses and magnetic-field damping.« less