skip to main content


Title: Emerging Themes and Future Directions of Multi-Sector Nexus Research and Implementation
Water, energy, and food are all essential components of human societies. Collectively, their respective resource systems are interconnected in what is called the “nexus”. There is growing consensus that a holistic understanding of the interdependencies and trade-offs between these sectors and other related systems is critical to solving many of the global challenges they present. While nexus research has grown exponentially since 2011, there is no unified, overarching approach, and the implementation of concepts remains hampered by the lack of clear case studies. Here, we present the results of a collaborative thought exercise involving 75 scientists and summarize them into 10 key recommendations covering: the most critical nexus issues of today, emerging themes, and where future efforts should be directed. We conclude that a nexus community of practice to promote open communication among researchers, to maintain and share standardized datasets, and to develop applied case studies will facilitate transparent comparisons of models and encourage the adoption of nexus approaches in practice.  more » « less
Award ID(s):
1639227 1740075 1739835
NSF-PAR ID:
10349778
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Frontiers in Environmental Science
Volume:
10
ISSN:
2296-665X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper is a research paper. Many engineering problems require efficient coordination across disciplinary boundaries. Few studies exist about how engineers negotiate and coordinate the knowledge required for working across these boundaries on large, intricate engineering problems. We approach knowledge as a complex and socially constructed system. Knowledge systems are inherently difficult to study because they are dynamic and ephemeral: they are only visible in interactions among the individuals of the community. The purpose of this research is to gain a better understanding of the knowledge system of practicing engineers through ethnographic observations of their practices. We used an ethnography-inspired situative approach based on observable knowledge practices to study the knowledge system of practicing engineers. Data was collected through observation of a Critical Design Review (CDR) of a satellite project at NASA. A CDR occurs after the technical design and specifications of a project nears completion and brings together the scientists and engineers on a project to present their plans to an external review board. A CDR therefore provides a unique opportunity to witness how knowledge is exchanged and negotiated within a complex, interdisciplinary setting. The resulting ethnographic observations were analyzed and categorized into peak events. Peak events were identified when successive questions were asked pertaining to the engineering design. Focusing on these events is a useful lens to get insight about the overall knowledge system because they can represent moments where different understandings and disciplinary perspectives emerge. This paper reports on one such peak event concerning the thermal design of the satellite. We focus on one peak to provide sufficient detail so that the knowledge system and its context can be understood. Thermal design of a spacecraft is complex and dynamic with the engineer having to design for drastically different external thermal environments while balancing the changing thermal demands of internal systems. The thermal design discussion provides a particularly thorough example of a knowledge system since the engineer explained, justified, negotiated, and defended knowledge within a social setting. For example, a reviewer asked the engineer if they had taken into account what they considered to be the worst-case scenario. This required an extended discussion to negotiate the criteria by which the credibility and relevance of design components were assessed and to create a shared meaning of what “worst-case” meant. This discussion was centrally important to the technical success of the project and was unequivocally “engineering,” even though it was light on technical detail. This aspect of engineering work is focused more on the epistemic criteria by which knowledge is assessed (i.e. on the foundations of the knowledge system), rather than the technical knowledge of the design itself. Engineering students do not get much practice or instruction in explicitly negotiating knowledge systems and epistemic standards. Although this analysis is limited to a single discussion, we argue that such discussions are important in many engineering projects. Understanding how engineers communicate across different epistemic and disciplinary viewpoints is another step towards creating an engineering curriculum that more closely aligns with engineering practice. Furthermore, it shows that engineering knowledge is not only something to be possessed but instead something that must be negotiated within an interconnected and socially situated knowledge system. 
    more » « less
  2. Water and power systems are increasingly interdependent due to the growing number of electricity-driven water facilities. The security of one system can be affected by a contingency in the other system. This paper investigates a security-constrained operation problem of the energy-water nexus (EWN), which is a computationally challenging optimization problem due to the nonlinearity, nonconvexity, and size. We propose a two-step iterative contingency filtering method based on the feasibility and rating of the contingencies to decrease the size of the problem. The optimal power and water flow are obtained in a normal situation by considering the set of contingencies that can not be controlled with corrective actions. The feasibility check of the contingencies is performed in the second step, followed by a rating of the uncontrollable contingencies. Finally, the critical contingencies are obtained and added to the first step for the next iteration. We also employ convex technologies to reduce the computation burden. The proposed method is validated via two case studies. Results indicate that this approach can efficiently attain optimal values. 
    more » « less
  3. Change to global climate, including both its progressive character and episodic extremes, constitutes a critical societal challenge. We apply here a framework to analyze Climate-induced Extremes on the Food, Energy, Water System Nexus (C-FEWS), with particular emphasis on the roles and sensitivities of traditionally-engineered (TEI) and nature-based (NBI) infrastructures. The rationale and technical specifications for the overall C-FEWS framework, its component models and supporting datasets are detailed in an accompanying paper (Vörösmarty et al., this issue). We report here on initial results produced by applying this framework in two important macro-regions of the United States (Northeast, NE; Midwest, MW), where major decisions affecting global food production, biofuels, energy security and pollution abatement require critical scientific support. We present the essential FEWS-related hypotheses that organize our work with an overview of the methodologies and experimental designs applied. We report on initial C-FEWS framework results using five emblematic studies that highlight how various combinations of climate sensitivities, TEI-NBI deployments, technology, and environmental management have determined regional FEWS performance over a historical time period (1980–2019). Despite their relative simplicity, these initial scenario experiments yielded important insights. We found that FEWS performance was impacted by climate stress, but the sensitivity was strongly modified by technology choices applied to both ecosystems (e.g., cropland production using new cultivars) and engineered systems (e.g., thermoelectricity from different fuels and cooling types). We tabulated strong legacy effects stemming from decisions on managing NBI (e.g., multi-decade land conversions that limit long-term carbon sequestration). The framework also enabled us to reveal how broad-scale policies aimed at a particular net benefit can result in unintended and potentially negative consequences. For example, tradeoff modeling experiments identified the regional importance of TEI in the form wastewater treatment and NBI via aquatic self-purification. This finding, in turn, could be used to guide potential investments in point and/or non-point source water pollution control. Another example used a reduced complexity model to demonstrate a FEWS tradeoff in the context of water supply, electricity production, and thermal pollution. Such results demonstrated the importance of TEI and NBI in jointly determining historical FEWS performance, their vulnerabilities, and their resilience to extreme climate events. These infrastructures, plus technology and environmental management, constitute the “policy levers” which can actively be engaged to mitigate the challenge of contemporary and future climate change. 
    more » « less
  4. Systems models of the Food–Water–Energy (FWE) nexus face a conceptual difficulty: the systematic integration of local stakeholder perspectives into a coherent framework for analysis. We present a novel procedure to co-produce and systematize the real-life complexity of stakeholder knowledge and forge it into a clear-cut set of challenges. These are clustered into the Pressure–State–Response (PSIR) framework, which ultimately guides the development of a conceptual systems model closely attuned to the needs of local stakeholders. We apply this approach to the case of the emerging megacity Pune and the Bhima basin in India. Through stakeholder workshops, involving 75 resource users and experts, we identified 22 individual challenges. They include exogenous pressures, such as climate change and urbanization, and endogenous pressures, such as agricultural groundwater over-abstraction and land use change. These pressures alter the Bhima basin’s system state, characterized by inefficient water and energy supply systems and regional scarcity. The consequent impacts on society encompass the inadequate provision with food, water, and energy and livelihood challenges for farmers in the basin. An evaluation of policy responses within the conceptual systems model shows the complex cause–effect interactions between nexus subsystems. One single response action, such as the promotion of solar farming, can affect multiple challenges. The resulting concise picture of the regional FWE system serves resource users, policymakers, and researchers to evaluate long-term policies within the context of the urban FWE system. While the presented results are specific to the case study, the approach can be transferred to any other FWE nexus system. 
    more » « less
  5. Key points

    Magnetoencephalography data were acquired during a leg force task in pre‐/post‐practice sessions in adolescents and adults.

    Strong peri‐movement alpha and beta oscillations were mapped to the cortex.

    Following practice, performance improved and beta oscillations were altered.

    Beta oscillations decreased in the sensorimotor cortex in adolescents after practice, but increased in adults.

    No pre‐/post‐practice differences were detected for alpha oscillations.

    Abstract

    There is considerable evidence that there are motor performance and practice differences between adolescents and adults. Behavioural studies have suggested that these motor performance differences are simply due to experience. However, the neurophysiological nexus for these motor performance differences remains unknown. The present study investigates the short‐term changes (e.g. fast motor learning) in the alpha and beta event‐related desynchronizations (ERDs) associated with practising an ankle plantarflexion motor action. To this end, we utilized magnetoencephalography to identify changes in the alpha and beta ERDs in healthy adolescents (n = 21; age = 14 ± 2.1 years) and middle‐aged adults (n = 22; age = 36.6 ± 5 years) after practising an isometric ankle plantarflexion target‐matching task. After practice, all of the participants matched more targets and matched the targets faster, and had improved accuracy, faster reaction times and faster force production. However, the motor performance of the adults exceeded what was seen in the adolescents regardless of practice. In conjunction with the behavioural results, the strength of the beta ERDs across the motor planning and execution stages was reduced after practice in the sensorimotor cortices of the adolescents, but was stronger in the adults. No pre‐/post‐practice changes were found in the alpha ERDs. These outcomes suggest that there are age‐dependent changes in the sensorimotor cortical oscillations after practising a motor task. We suspect that these noted differences might be related to familiarity with the motor task, GABA levels and/or maturational differences in the integrity of the white matter fibre tracts that comprise the respective cortical areas.

     
    more » « less