In multiplayer games, players need to coordinate action to succeed. This paper investigates the effect of cognitive styles on performance of dyads engaged in collaborative gaming activities. 24 individuals took part in a mixed methods user-study; they were classified as field dependent (FD) or independent (FI) based on a cognitive style elicitation instrument. Three groups of teams were formed, based on the cognitive style of each team member: FD-FD, FD-FI, FI-FI. We examined performance in terms of game completion time, cognitive load, and player experience. The analysis revealed that FD-FI cognitive style had an effect on the performance and the mental load. We expect the findings to provide useful insight for practitioners and researchers on improving team collaboration in different contexts, such as learning, eSports, and disaster response.
more »
« less
Investigating the Effects of Individual Cognitive Styles on Collaborative Gameplay
In multiplayer collaborative games, players need to coordinate their actions and synchronize their efforts effectively to succeed as a team; thus, individual differences can impact teamwork and gameplay. This article investigates the effects of cognitive styles on teams engaged in collaborative gaming activities. Fifty-four individuals took part in a mixed-methods user study; they were classified as field-dependent (FD) or independent (FI) based on a field-dependent–independent (FD-I) cognitive-style-elicitation instrument. Three groups of teams were formed, based on the cognitive style of each team member: FD-FD, FD-FI, and FI-FI. We examined collaborative gameplay in terms of team performance, cognitive load, communication, and player experience. The analysis revealed that FD-I cognitive style affected the performance and mental load of teams. We expect the findings to provide useful insights on understanding how cognitive styles influence collaborative gameplay.
more »
« less
- PAR ID:
- 10349799
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Computer-Human Interaction
- Volume:
- 28
- Issue:
- 4
- ISSN:
- 1073-0516
- Page Range / eLocation ID:
- 1 to 49
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this pilot study, we used the Interaction Dynamics Notation (IDN), originally designed for use with engineering design teams, to explore the dynamic interactions of five NSF I-Corps™ teams engaged in a simple design activity. Our aim was to relate these interaction data to selected cognitive characteristics of the team members, as well as team design outcomes and individual perceptions related to the experience. The individual cognitive characteristics we assessed focused on cognitive style, as measured by the Kirton Adaption-Innovation inventory (KAI), while team outcomes included the novelty, usefulness, and feasibility of each team’s design solutions, as well as their success within and beyond the NSF I-Corps™ program. Our findings show that the Interaction Dynamics Notation (IDN) can be readily extended to the study of entrepreneurial teams, with important insights gained from the combined study of interaction dynamics, individual cognitive characteristics as measured by KAI, and team outcomes. The results of this study demonstrate the feasibility and value of this approach for investigating the dynamic interactions of NSF I-Corps™ teams, as well as product-focused design teams in general.more » « less
-
This research paper examines the patterns of inter-brain synchrony among engineering student teams and the relationship between inter-brain synchrony and team cooperation and performance. A pilot study was conducted with eight two-person teams of fourth-year undergraduate civil engineering students. Three collaborative design and build tasks were assigned to each team. Two independent raters carried out the behavioral analysis, scoring team cooperation. Each team member wore a functional near-infrared spectroscopy (fNIRS) device to measure inter-brain synchrony during the tasks. The results showed that inter-brain synchrony occurred during the team task, but the patterns varied between groups and tasks. Elevated levels of inter-brain synchrony were observed in the left ventrolateral prefrontal cortex (VLPFC) and left dorsolateral prefrontal cortex (DLPFC). The left VLPFC and left DLPFC are often associated with cognitive processes such as problem-solving, working memory, decision-making, and coordinated verbal exchange. Inter-brain synchrony was positively correlated with task performance and cooperation when teams were asked to design and build a structure given limited time and money but negatively correlated with cooperation and performance on other more open-ended design sketching tasks. The study’s findings suggest that inter-brain synchrony exists when engineering students work together as a team, but the results are inconsistent between task types. Inter-brain synchrony could be a useful metric for measuring team cooperation and performance, particularly in tasks that require coordinated verbal exchange, problemsolving, and decision-making. However, the study’s small sample size limits the generalizability of the results. Future studies with a larger sample size and more diverse groups of engineers are needed to validate the findings and explore their implications further.more » « less
-
Metacognition is widely acknowledged as a key soft skill in collaborative software development. The ability to plan, monitor, and reflect on cognitive and team processes is crucial to the efficient and effective functioning of a software team. To explore students' use of reflection--one aspect of metacognition--in undergraduate team software projects, we analyzed the online chat channels of teams participating in agile software development projects in two undergraduate courses that took place exclusively online (n = 23 teams, 117 students, and 4,915 chat messages). Teams' online chats were dominated by discussions of work completed and to be done; just two percent of all chat messages showed evidence of reflection. A follow-up analysis of chat vignettes centered around reflection messages (n = 63) indicates that three-fourths of the those messages were prompted by a course requirement; just 14\% arose organically within the context of teams' ongoing project work. Based on our findings, we identify opportunities for computing educators to increase, through pedagogical and technological interventions, teams' use of reflection in team software projects.more » « less
-
Learning algebra concepts, particularly those involving functions, is crucial yet challenging in mathematics education. Research suggests that collaborative learning, where students work in small teams to solve math problems, can support conceptual learning. However, collaborative problem solving (CPS) is complex and requires students’ social and cognitive skills for success. This study investigates the impacts of guided facilitation on supporting CPS in mathematics tasks during small-team collaboration. Using epistemic network analysis and sequential pattern mining, we analyzed chat logs from student teams and human facilitators and compared the interactions in facilitated and unfacilitated teams. Results indicated that near-peer facilitation effectively promoted constructive behaviors like multiple turns of social negotiation, while reducing inappropriate communications. Different facilitation strategies, such as encouraging students to respond to each other or clarify their statements, elicited targeted CPS behaviors, possibly leading to improved team performance. Findings have practical implications for facilitating CPS in mathematics classrooms.more » « less
An official website of the United States government

