skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A new measure for team performance: Measuring inter-brain synchrony of engineering students when designing and building
This research paper examines the patterns of inter-brain synchrony among engineering student teams and the relationship between inter-brain synchrony and team cooperation and performance. A pilot study was conducted with eight two-person teams of fourth-year undergraduate civil engineering students. Three collaborative design and build tasks were assigned to each team. Two independent raters carried out the behavioral analysis, scoring team cooperation. Each team member wore a functional near-infrared spectroscopy (fNIRS) device to measure inter-brain synchrony during the tasks. The results showed that inter-brain synchrony occurred during the team task, but the patterns varied between groups and tasks. Elevated levels of inter-brain synchrony were observed in the left ventrolateral prefrontal cortex (VLPFC) and left dorsolateral prefrontal cortex (DLPFC). The left VLPFC and left DLPFC are often associated with cognitive processes such as problem-solving, working memory, decision-making, and coordinated verbal exchange. Inter-brain synchrony was positively correlated with task performance and cooperation when teams were asked to design and build a structure given limited time and money but negatively correlated with cooperation and performance on other more open-ended design sketching tasks. The study’s findings suggest that inter-brain synchrony exists when engineering students work together as a team, but the results are inconsistent between task types. Inter-brain synchrony could be a useful metric for measuring team cooperation and performance, particularly in tasks that require coordinated verbal exchange, problemsolving, and decision-making. However, the study’s small sample size limits the generalizability of the results. Future studies with a larger sample size and more diverse groups of engineers are needed to validate the findings and explore their implications further.  more » « less
Award ID(s):
2128039
PAR ID:
10472277
Author(s) / Creator(s):
; ;
Publisher / Repository:
Engineering Project Organization Conference
Date Published:
Journal Name:
Engineering project organization journal
ISSN:
2157-3735
Format(s):
Medium: X
Location:
Berlin, Germany
Sponsoring Org:
National Science Foundation
More Like this
  1. Models of human categorization predict the prefrontal cortex (PFC) serves a central role in category learning. The dorsolateral prefrontal cortex (dlPFC) and ventromedial prefrontal cortex (vmPFC) have been implicated in categorization; however, it is unclear whether both are critical for categorization and whether they support unique functions. We administered three categorization tasks to patients with PFC lesions (mean age, 69.6 years; 5 men, 5 women) to examine how the prefrontal subregions contribute to categorization. These included a rule-based (RB) task that was solved via a unidimensional rule, an information integration (II) task that was solved by combining information from two stimulus dimensions, and a deterministic/probabilistic (DP) task with stimulus features that had varying amounts of category-predictive information. Compared with healthy comparison participants, both patient groups had impaired performance. Impairments in the dlPFC patients were largest during the RB task, whereas impairments in the vmPFC patients were largest during the DP task. A hierarchical model was fit to the participants’ data to assess learning deficits in the patient groups. PFC damage was correlated with a regularization term that limited updates to attention after each trial. Our results suggest that the PFC, as a whole, is important for learning to orient attention to relevant stimulus information. The dlPFC may be especially important for rule-based learning, whereas the vmPFC may be important for focusing attention on deterministic (highly diagnostic) features and ignoring less predictive features. These results support overarching functions of the dlPFC in executive functioning and the vmPFC in value-based decision-making. 
    more » « less
  2. Gero, John S. (Ed.)
    To explore the connection between brain and behavior in engineering design, this study measured the change in neurocognition of engineering students while they developed concept maps. Concept maps help designers organize complex ideas by illustrating components and relationships. Student concept maps were graded using a pre-established scoring method and compared to their neurocognitive activation. Results show significant correlations between performance and neurocognition. Concept map scores were positively correlated with activation in students’ prefrontal cortex. A prominent sub-region was the right dorsolateral prefrontal cortex (DLPFC), which is generally associated with divergent thinking and cognitive flexibility. Student scores were negatively correlated with measures of brain network density. The findings suggest a possible neurocognitive mechanism for better performance. More research is needed to connect brain activation to the cognitive activi-ies that occur when designing but these results provide new evidence for the brain functions that support the development of complex ideas during design. 
    more » « less
  3. null (Ed.)
    Abstract This paper presents the results of studying the brain activations of 30 engineering students when using three different design concept generation techniques: brainstorming, morphological analysis, and TRIZ. Changes in students’ brain activation in the prefrontal cortex were measured using functional near-infrared spectroscopy. The results are based on the area under the curve analysis of oxygenated hemodynamic response as well as an assessment of functional connectivity using Pearson’s correlation to compare students’ cognitive brain activations using these three different ideation techniques. The results indicate that brainstorming and morphological analysis demand more cognitive activation across the prefrontal cortex (PFC) compared to TRIZ. The highest cognitive activation when brainstorming and using morphological analysis is in the right dorsolateral PFC (DLPFC) and ventrolateral PFC. These regions are associated with divergent thinking and ill-defined problem-solving. TRIZ produces more cognitive activation in the left DLPFC. This region is associated with convergent thinking and making judgments. Morphological analysis and TRIZ also enable greater coordination (i.e., synchronized activation) between brain regions. These findings offer new evidence that structured techniques like TRIZ reduce cognitive activation, change patterns of activation and increase coordination between regions in the brain. 
    more » « less
  4. Interactions across frontal cortex are critical for cognition. Animal studies suggest a role for mediodorsal thalamus (MD) in these interactions, but the computations performed and direct relevance to human decision making are unclear. Here, inspired by animal work, we extended a neural model of an executive frontal-MD network and trained it on a human decision-making task for which neuroimaging data were collected. Using a biologically-plausible learning rule, we found that the model MD thalamus compressed its cortical inputs (dorsolateral prefrontal cortex, dlPFC) underlying stimulus-response representations. Through direct feedback to dlPFC, this thalamic operation efficiently partitioned cortical activity patterns and enhanced task switching across different contingencies. To account for interactions with other frontal regions, we expanded the model to compute higher-order strategy signals outside dlPFC, and found that the MD offered a more efficient route for such signals to switch dlPFC activity patterns. Human fMRI data provided evidence that the MD engaged in feedback to dlPFC, and had a role in routing orbitofrontal cortex inputs when subjects switched behavioral strategy. Collectively, our findings contribute to the emerging evidence for thalamic regulation of frontal interactions in the human brain. 
    more » « less
  5. The research presented in this paper explores features of temporal design neurocognition by comparing regions of activation in the brain during concept generation. A total of 27 engineering graduate students used brainstorming, morphological analysis, and TRIZ to generate concepts to design problems. Students' brain activation in their prefrontal cortex (PFC) was measured using functional near-infrared spectroscopy (fNIRS). Temporal activations were compared between techniques. When using brainstorming and morphological analysis, highly activated regions are consistently situated in the medial and right part of the PFC over time. For both techniques, the temporal neuro-physiological patterns are similar. Cognitive functions associated to the medial and right part of the PFC suggest an association with divergent thinking and adaptive decision making. In contrast, highly activated regions over time when using TRIZ appear in the medial or the left part of the prefrontal cortex, usually associated with goal directed planning. 
    more » « less