skip to main content


Title: Twisted molecular wires polarize spin currents at room temperature
A critical spintronics challenge is to develop molecular wires that render efficiently spin-polarized currents. Interplanar torsional twisting, driven by chiral binucleating ligands in highly conjugated molecular wires, gives rise to large near-infrared rotational strengths. The large scalar product of the electric and magnetic dipole transition moments ( μ → i j ⋅ m → i j ), which are evident in the low-energy absorptive manifolds of these wires, makes possible enhanced chirality-induced spin selectivity–derived spin polarization. Magnetic-conductive atomic force microscopy experiments and spin-Hall devices demonstrate that these designs point the way to achieve high spin selectivity and large-magnitude spin currents in chiral materials.  more » « less
Award ID(s):
1925690
NSF-PAR ID:
10349814
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
6
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids. This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications involving intricate interplays among structural chirality, topological states, and electronic spin and orbitals. However, the microscopic picture of how chiral geometry influences electronic spin remains elusive, given the negligible spin-orbit coupling (SOC) in organic molecules. In this work, we address this issue via a direct comparison of magnetoconductance (MC) measurements on magnetic semiconductor-based chiral molecular spin valves with normal metal electrodes of contrasting SOC strengths. The experiment reveals that a heavy-metal electrode provides SOC to convert the orbital polarization induced by the chiral molecular structure tospinpolarization. Our results illustrate the essential role of SOC in the metal electrode for the CISS spin valve effect. A tunneling model with a magnetochiral modulation of the potential barrier is shown to quantitatively account for the unusual transport behavior.

     
    more » « less
  2. Utilization of the interaction between spin and heat currents is the central focus of the field of spin caloritronics. Chiral phonons possessing angular momentum arising from the broken symmetry of a non-magnetic material create the potential for generating spin currents at room temperature in response to a thermal gradient, precluding the need for a ferromagnetic contact. Here we show the observation of spin currents generated by chiral phonons in a two-dimensional layered hybrid organic–inorganic perovskite implanted with chiral cations when subjected to a thermal gradient. The generated spin current shows a strong dependence on the chirality of the film and external magnetic fields, of which the coefficient is orders of magnitude larger than that produced by the reported spin Seebeck effect. Our findings indicate the potential of chiral phonons for spin caloritronic applications and offer a new route towards spin generation in the absence of magnetic materials. 
    more » « less
  3. null (Ed.)
    Zero- to ultralow-field (ZULF) nuclear magnetic resonance (NMR) is a version of NMR that allows studying molecules and their transformations in the regime dominated by intrinsic spin-spin interactions. While spin dynamics at zero magnetic field can be probed indirectly, J-spectra can also be measured at zero field by using non-inductive sensors, for example, optically-pumped magnetometers (OPMs). A J-spectrum can be detected when a molecule contains at least two different types of magnetic nuclei (i.e., nuclei with different gyromagnetic ratios) that are coupled via J-coupling. Up to date, no pure J-spectra of molecules featuring the coupling to quadrupolar nuclei were reported. Here we show that zero-field J-spectra can be collected from molecules containing quadrupolar nuclei with I = 1 and demonstrate this for solutions containing various isotopologues of ammonium cations. Lower ZULF NMR signals are observed for molecules containing larger numbers of deuterons compared to protons; this is attributed to less overall magnetization and not to the scalar relaxation of the second kind. We analyze the energy structure and allowed transitions for the studied molecular cations in detail using perturbation theory and demonstrate that in the studied systems, different lines in J-spectra have different dependencies on the magnetic pulse length allowing for unique on-demand zero-field spectral editing. Precise values for the 15N-1H, 14N-1H, and D-1H coupling constants are extracted from the spectra and the difference in the reduced coupling constants is explained by the secondary isotope effect. Simple symmetric cations such as ammonium do not require expensive isotopic labeling for the observation of J-spectra and, thus, may expand the applicability of ZULF NMR spectroscopy in biomedicine and energy storage. 
    more » « less
  4. Essential aspects of the chiral induced spin selectivity (CISS) effect and their implications for spin-controlled chemistry and asymmetric electrochemical reactions are described. The generation of oxygen through electrolysis is discussed as an example in which chirality-based spin-filtering and spin selection rules can be used to improve the reaction's efficiency and selectivity. Next the discussion shifts to illustrate how the spin selectivity of chiral molecules (CISS properties) allows one to use the electron spin as a chiral bias for inducing asymmetric reactions and promoting enantiospecific processes. Two enantioselective electrochemical reactions that have used polarized electron spins as a chiral reagent are described; enantioselective electroreduction to resolve an enantiomer from a racemic mixture and an oxidative electropolymerization to generate a chiral polymer from achiral monomers. A complementary approach that has used spin-polarized, but otherwise achiral, molecular films to enantiospecifically associate with one enantiomer from a racemic mixture is also discussed. Each of these reaction types use magnetized films to generate the spin polarized electrons and the enantiospecificity can be selected by choice of the magnetization direction, North pole versus South pole. Possible paths for future research in this area and its compatibility with existing methods based on chiral electrodes are discussed. 
    more » « less
  5. Abstract

    In magnetoelectric materials, magnetic and dielectric/ferroelectric properties couple to each other. This coupling could enable lower power consumption and new functionalities in devices such as sensors, memories and transducers, since voltages instead of electric currents are sensing and controlling the magnetic state. We explore a different approach to magnetoelectric coupling in which we use the magnetic spin state instead of the more traditional ferro or antiferromagnetic order to couple to electric properties. In our molecular compound, magnetic field induces a spin crossover from the S = 1 to the S = 2 state of Mn3+, which in turn generates molecular distortions and electric dipoles. These dipoles couple to the magnetic easy axis, and form different polar, antipolar and paraelectric phases vs magnetic field and temperature. Spin crossover compounds are a large class of materials where the spin state can modify the structure, and here we demonstrate that this is a route to magnetoelectric coupling.

     
    more » « less