skip to main content


Title: Depuration Kinetics and Growth Dilution of Caribbean Ciguatoxin in the Omnivore Lagodon rhomboides: Implications for Trophic Transfer and Ciguatera Risk
Modeling ciguatoxin (CTX) trophic transfer in marine food webs has significant implications for the management of ciguatera poisoning, a circumtropical disease caused by human consumption of CTX-contaminated seafood. Current models associated with CP risk rely on modeling abundance/presence of CTX-producing epi-benthic dinoflagellates, e.g., Gambierdiscus spp., and are based on studies showing that toxin production is site specific and occurs in pulses driven by environmental factors. However, food web models are not yet developed and require parameterizing the CTX exposure cascade in fish which has been traditionally approached through top-down assessment of CTX loads in wild-caught fish. The primary goal of this study was to provide critical knowledge on the kinetics of C-CTX-1 bioaccumulation and depuration in the marine omnivore Lagodon rhomboides. We performed a two-phase, 17 week CTX feeding trial in L. rhomboides where fish were given either a formulated C-CTX-1 (n = 40) or control feed (n = 37) for 20 days, and then switched to a non-toxic diet for up to 14 weeks. Fish were randomly sampled through time with whole muscle, liver, and other pooled viscera dissected for toxin analysis by a sodium channel-dependent MTT-based mouse neuroblastoma (N2a) assay. The CTX levels measured in all tissues increased with time during the exposure period (days 1 to 20), but a decrease in CTX-specific toxicity with depuration time only occurred in viscera extracts. By the end of the depuration, muscle, liver, and viscera samples had mean toxin concentrations of 189%, 128%, and 42%, respectively, compared to fish sampled at the start of the depuration phase. However, a one-compartment model analysis of combined tissues showed total concentration declined to 56%, resulting in an approximate half-life of 97 d (R2 = 0.43). Further, applying growth dilution correction models to the overall concentration found that growth was a major factor reducing C-CTX concentrations, and that the body burden was largely unchanged, causing pseudo-elimination and a half-life of 143–148 days (R2 = 0.36). These data have important implications for food web CTX models and management of ciguatera poisoning in endemic regions where the frequency of environmental algal toxin pulses may be greater than the growth-corrected half-life of C-CTX in intermediate-trophic-level fish with high site fidelity.  more » « less
Award ID(s):
1841811
NSF-PAR ID:
10349822
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Toxins
Volume:
13
Issue:
11
ISSN:
2072-6651
Page Range / eLocation ID:
774
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ciguatera poisoning (CP) poses a significant threat to ecosystem services and fishery resources in coastal communities. The CP-causative ciguatoxins (CTXs) are produced by benthic dinoflagellates including Gambierdiscus and Fukuyoa spp., and enter reef food webs via grazing on macroalgal substrates. In this study, we report on a 3-year monthly time series in St. Thomas, US Virgin Islands where Gambierdiscus spp. abundance and Caribbean-CTX toxicity in benthic samples were compared to key environmental factors, including temperature, salinity, nutrients, benthic cover, and physical data. We found that peak Gambierdiscus abundance occurred in summer while CTX-specific toxicity peaked in cooler months (February–May) when the mean water temperatures were approximately 26–28 °C. These trends were most evident at deeper offshore sites where macroalgal cover was highest year-round. Other environmental parameters were not correlated with the CTX variability observed over time. The asynchrony between Gambierdiscus spp. abundance and toxicity reflects potential differences in toxin cell quotas among Gambierdiscus species with concomitant variability in their abundances throughout the year. These results have significant implications for monitoring and management of benthic harmful algal blooms and highlights potential seasonal and highly-localized pulses in reef toxin loads that may be transferred to higher trophic levels. 
    more » « less
  2. Tropical epibenthic dinoflagellate communities produce a plethora of bioactive secondary metabolites, including the toxins ciguatoxins (CTXs) and potentially gambierones, that can contaminate fishes, leading to ciguatera poisoning (CP) when consumed by humans. Many studies have assessed the cellular toxicity of causative dinoflagellate species to better understand the dynamics of CP outbreaks. However, few studies have explored extracellular toxin pools which may also enter the food web, including through alternative and unanticipated routes of exposure. Additionally, the extracellular exhibition of toxins would suggest an ecological function and may prove important to the ecology of the CP-associated dinoflagellate species. In this study, semi-purified extracts obtained from the media of a Coolia palmyrensis strain (DISL57) isolated from the U.S. Virgin Islands were assessed for bioactivity via a sodium channel specific mouse neuroblastoma cell viability assay and associated metabolites evaluated by targeted and non-targeted liquid chromatography tandem and high-resolution mass spectrometry. We found that extracts of C. palmyrensis media exhibit both veratrine enhancing bioactivity and non-specific bioactivity. LC-HR-MS analysis of the same extract fractions identified gambierone and multiple undescribed peaks with mass spectral characteristics suggestive of structural similarities to polyether compounds. These findings implicate C. palmyrensis as a potential contributor to CP and highlight extracellular toxin pools as a potentially significant source of toxins that may enter the food web through multiple exposure pathways. 
    more » « less
  3. Ciguatera poisoning is linked to the ingestion of seafood that is contaminated with ciguatoxins (CTXs). The structural variability of these polyether toxins in nature remains poorly understood due to the low concentrations present even in highly toxic fish, which makes isolation and chemical characterization difficult. We studied the mass spectrometric fragmentation of Caribbean CTXs, i.e., the epimers C-CTX-1 and -2 (1 and 2), using a sensitive UHPLC–HRMS/MS approach in order to identify product ions of diagnostic value. We found that the fragmentation of the ladder-frame backbone follows a characteristic pattern and propose a generalized nomenclature for the ions formed. These data were applied to the structural characterization of a pair of so far poorly characterized isomers, C-CTX-3 and -4 (3 and 4), which we found to be reduced at C-56 relative to 1 and 2. Furthermore, we tested and applied reduction and oxidation reactions, monitored by LC–HRMS, in order to confirm the structures of 3 and 4. Reduction of 1 and 2 with NaBH4 afforded 3 and 4, thereby unambiguously confirming the identities of 3 and 4. In summary, this work provides a foundation for mass spectrometry-based characterization of new C-CTXs, including a suite of simple chemical reactions to assist the examination of structural modifications. 
    more » « less
  4. Abstract

    Nitrogen and carbon stable isotope data sets are commonly used to assess complex population to ecosystem responses to natural or anthropogenic changes at regional to global spatial scales, and monthly to decadal timescales. Measured in the tissues of consumers, nitrogen isotopes (δ15N) are primarily used to estimate trophic position while carbon isotopes (δ13C) describe habitat associations and feeding pathways. Models of both δ15N and δ13C values and their associated variance can be used to estimate likely dietary contributions and niche width and provide inferences about consumer movement and migration. Stable isotope data have added utility when used in combination with other empirical data sets (e.g., stomach content, movement tracking, bioregionalization, contaminant, or fisheries data) and are increasingly relied upon in food web and ecosystem models. While numerous regional studies publish tables of mean δ15N and δ13C values, limited individual records have been made available for wider use. Such a deficiency has impeded full utility of the data, which otherwise would facilitate identification of macroscale patterns. The data provided here consist of 4,498 records of individuals of three tuna species,Thunnus alalunga,T. obesus, andT. albacaressampled from all major ocean basins from 2000 to 2015. For each individual tuna, we provide a record of the following: species name, sampling date, sampling location, tuna length, muscle bulk and baseline corrected δ15N values, and muscle bulk and, where available, lipid corrected δ13C values. We provide these individual records to support comparative studies and more robust modeling projects seeking to improve understanding of complex marine ecosystem dynamics and their responses to a changing environment. There are no copyright restrictions for research and/or teaching purposes. Users are requested to acknowledge their use of the data in publications, research proposals, websites, and other outlets following the citation instructions in Class III, Section B.

     
    more » « less
  5. Abstract

    Animals often consume resources from multiple energy channels, thereby connecting food webs and driving trophic structure. Such ‘multichannel feeding’ can dictate ecosystem function and stability, but tools to quantify this process are lacking. Stable isotope ‘fingerprints’ are unique patterns in essential amino acid (EAA) δ13C values that vary consistently between energy channels like primary production and detritus, and they have emerged as a tool to trace energy flow in wild systems. Because animals cannot synthesize EAAs de novo and must acquire them from dietary proteins, ecologists often assume δ13C fingerprints travel through food webs unaltered. Numerous studies have used this approach to quantify energy flow and multichannel feeding in animals, but δ13C fingerprinting has never been experimentally tested in a vertebrate consumer.

    We tested the efficacy of δ13C fingerprinting using captive deer micePeromyscus maniculatusraised on diets containing bacterial, fungal and plant protein, as well as a combination of all three sources. We measured the transfer of δ13C fingerprints from diet to consumer liver, muscle and bone collagen, and we used linear discriminant analysis (LDA) and isotopic mixing models to estimate dietary proportions compared to known contributions. Lastly, we tested the use of published δ13C source fingerprints previously used to estimate energy flow and multichannel feeding by consumers.

    We found that EAA δ13C values exhibit significant isotopic (i.e. trophic) fractionation between consumer tissues and diets. Nevertheless, LDA revealed that δ13C fingerprints are consistently routed and assimilated into consumer tissues, regardless of isotopic incorporation rate. Isotopic mixing models accurately estimated the proportional diets of consumers, but all models overestimated plant‐based protein contributions, likely due to the digestive efficiencies of protein sources. Lastly, we found that δ13C source fingerprints from published literature can lead to erroneous diet reconstruction.

    We show that δ13C fingerprints accurately measure energy flow to vertebrate consumers across tissues with different isotopic incorporation rates, thereby enabling the estimation of multichannel feeding at various temporal scales. Our findings illustrate the power of δ13C fingerprinting for quantifying food web dynamics, but also reveal that careful selection of dietary source data is critical to the accuracy of this emerging technique.

     
    more » « less