Ciguatera poisoning (CP) poses a significant threat to ecosystem services and fishery resources in coastal communities. The CP-causative ciguatoxins (CTXs) are produced by benthic dinoflagellates including Gambierdiscus and Fukuyoa spp., and enter reef food webs via grazing on macroalgal substrates. In this study, we report on a 3-year monthly time series in St. Thomas, US Virgin Islands where Gambierdiscus spp. abundance and Caribbean-CTX toxicity in benthic samples were compared to key environmental factors, including temperature, salinity, nutrients, benthic cover, and physical data. We found that peak Gambierdiscus abundance occurred in summer while CTX-specific toxicity peaked in cooler months (February–May) when the mean water temperatures were approximately 26–28 °C. These trends were most evident at deeper offshore sites where macroalgal cover was highest year-round. Other environmental parameters were not correlated with the CTX variability observed over time. The asynchrony between Gambierdiscus spp. abundance and toxicity reflects potential differences in toxin cell quotas among Gambierdiscus species with concomitant variability in their abundances throughout the year. These results have significant implications for monitoring and management of benthic harmful algal blooms and highlights potential seasonal and highly-localized pulses in reef toxin loads that may be transferred to higher trophic levels.
more »
« less
CiguaMOD I: A conceptual model of ciguatoxin loading in the Greater Caribbean Region
Ciguatera poisoning (CP) is the most common form of phycotoxin-borne seafood poisoning globally, affecting thousands of people on an annual basis. It most commonly occurs in residential fish of coral reefs, which consume toxin-laden algae, detritus, and reef animals. The class of toxins that cause CP, ciguatoxins (CTXs), originate in benthic, epiphytic dinoflagellates of the genera, Gambierdiscus and Fukuyoa, which are consumed by herbivores and detritivores that facilitate food web transfer. A number of factors have hindered adequate environmental monitoring and seafood surveillance for ciguatera including the low concentrations in which the toxins are found in seafood causing illness (sub-ppb), a lack of knowledge on the toxicity equivalence of other CTXs and contribution of other benthic algal toxins to the disease, and the limited availability of quantified toxin standards and reference materials. While progress has been made on the identification of the dinoflagellate taxa and toxins responsible for CP, more effort is needed to better understand the dynamics of toxin transfer into reef food webs in order to implement a practical monitoring program for CP. Here, we present a conceptual model that utilizes empirical field data (temperature, Gambierdiscus cell densities, macrophyte cover) in concert with other published studies (grazing rates and preference) to produce modeling outputs that suggest approaches that may be beneficial to developing monitoring programs: 1) targeting specific macrophytes for Gambierdiscus and toxin measurements to monitor toxin levels at the base of the food web (i.e., toxin loading); and 2) adjusting these targets across sites and over seasons. Coupling this approach with other methodologies being incorporated into monitoring programs (artificial substrates; FISH probes; toxin screening) may provide an “early warning” system to develop strategic responses to potential CP flare ups in the future.
more »
« less
- PAR ID:
- 10546549
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Harmful Algae
- Volume:
- 131
- Issue:
- C
- ISSN:
- 1568-9883
- Page Range / eLocation ID:
- 102561
- Subject(s) / Keyword(s):
- ciguatera, harmful algal bloom, HAB, coral reef, tropical
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ciguatera Poisoning (CP) is a widespread and complex poisoning syndrome caused by the consumption of fish or invertebrates contaminated with a suite of potent neurotoxins collectively known as ciguatoxins (CTXs), which are produced by certain benthic dinoflagellates species in the genera Gambierdiscus and Fukuyoa. Due to the complex nature of this HAB problem, along with a poor understanding of toxin production and entry in the coral reef food web, the development of monitoring, management, and forecasting approaches for CP has lagged behind those available for other HAB syndromes. Over the past two decades, renewed research on the taxonomy, physiology, and toxicology of CP-causing dinoflagellates has advanced our understanding of the species diversity that exists within these genera, including identification of several highly toxic species (so called “superbugs”) that likely contribute disproportionately to ciguatoxins entering coral reef food webs. The recent development of approaches for molecular analysis of field samples now provide the means to investigate in situ community composition, enabling characterization of spatio-temporal species dynamics, linkages between toxic species abundance and toxin flux, and the risk of ciguatoxin prevalence in fish. In this study we used species-specific fluorescent in situ hybridization (FISH) probes to investigate Gambierdiscus species composition and dynamics in St. Thomas (USVI) and the Florida Keys (USA) over multiple years of sampling (2018-2020). Within each location, samples were collected seasonally from several sites comprising varying depths, habitats, and algal substrates to characterize community structure over small spatial scales and across different host macrophytes. This approach enabled the quantitative determination of communities over spatiotemporal gradients, as well as the selective enumeration of species known to exhibit high toxicity, such as Gambierdiscus silvae. The investigation found differing community structure between St. Thomas and Florida Keys sites, driven in part by differences in the distribution of toxin producing species G. silvae and G. belizeanus, which were present throughout sampling sites in St. Thomas but scarce or absent in the Florida Keys. This finding is significant given the high toxicity of G. silvae, and may help explain differences in fish toxicity and CP incidence between St. Thomas and Florida.more » « less
-
Modeling ciguatoxin (CTX) trophic transfer in marine food webs has significant implications for the management of ciguatera poisoning, a circumtropical disease caused by human consumption of CTX-contaminated seafood. Current models associated with CP risk rely on modeling abundance/presence of CTX-producing epi-benthic dinoflagellates, e.g., Gambierdiscus spp., and are based on studies showing that toxin production is site specific and occurs in pulses driven by environmental factors. However, food web models are not yet developed and require parameterizing the CTX exposure cascade in fish which has been traditionally approached through top-down assessment of CTX loads in wild-caught fish. The primary goal of this study was to provide critical knowledge on the kinetics of C-CTX-1 bioaccumulation and depuration in the marine omnivore Lagodon rhomboides. We performed a two-phase, 17 week CTX feeding trial in L. rhomboides where fish were given either a formulated C-CTX-1 (n = 40) or control feed (n = 37) for 20 days, and then switched to a non-toxic diet for up to 14 weeks. Fish were randomly sampled through time with whole muscle, liver, and other pooled viscera dissected for toxin analysis by a sodium channel-dependent MTT-based mouse neuroblastoma (N2a) assay. The CTX levels measured in all tissues increased with time during the exposure period (days 1 to 20), but a decrease in CTX-specific toxicity with depuration time only occurred in viscera extracts. By the end of the depuration, muscle, liver, and viscera samples had mean toxin concentrations of 189%, 128%, and 42%, respectively, compared to fish sampled at the start of the depuration phase. However, a one-compartment model analysis of combined tissues showed total concentration declined to 56%, resulting in an approximate half-life of 97 d (R2 = 0.43). Further, applying growth dilution correction models to the overall concentration found that growth was a major factor reducing C-CTX concentrations, and that the body burden was largely unchanged, causing pseudo-elimination and a half-life of 143–148 days (R2 = 0.36). These data have important implications for food web CTX models and management of ciguatera poisoning in endemic regions where the frequency of environmental algal toxin pulses may be greater than the growth-corrected half-life of C-CTX in intermediate-trophic-level fish with high site fidelity.more » « less
-
Tropical epibenthic dinoflagellate communities produce a plethora of bioactive secondary metabolites, including the toxins ciguatoxins (CTXs) and potentially gambierones, that can contaminate fishes, leading to ciguatera poisoning (CP) when consumed by humans. Many studies have assessed the cellular toxicity of causative dinoflagellate species to better understand the dynamics of CP outbreaks. However, few studies have explored extracellular toxin pools which may also enter the food web, including through alternative and unanticipated routes of exposure. Additionally, the extracellular exhibition of toxins would suggest an ecological function and may prove important to the ecology of the CP-associated dinoflagellate species. In this study, semi-purified extracts obtained from the media of a Coolia palmyrensis strain (DISL57) isolated from the U.S. Virgin Islands were assessed for bioactivity via a sodium channel specific mouse neuroblastoma cell viability assay and associated metabolites evaluated by targeted and non-targeted liquid chromatography tandem and high-resolution mass spectrometry. We found that extracts of C. palmyrensis media exhibit both veratrine enhancing bioactivity and non-specific bioactivity. LC-HR-MS analysis of the same extract fractions identified gambierone and multiple undescribed peaks with mass spectral characteristics suggestive of structural similarities to polyether compounds. These findings implicate C. palmyrensis as a potential contributor to CP and highlight extracellular toxin pools as a potentially significant source of toxins that may enter the food web through multiple exposure pathways.more » « less
-
Ciguatera poisoning occurs throughout subtropical and tropical regions globally. The Virgin Islands in the Caribbean Sea is a known hyperendemic region for ciguatera and has been associated with Caribbean ciguatoxin (C-CTX) contamination in fish. An algal C-CTX (C-CTX5) was identified in Gambierdiscus silvae and G. caribeaus isolated from benthic algal samples collected in waters south of St. Thomas, US Virgin Islands. The highest CTXproducing isolate, G. silvae 1602 SH-6, was grown at large-scale to isolate sufficient C-CTX5 for structural confirmation by NMR spectroscopy. A series of orthogonal extraction and fractionation procedures resulted in purification of approximately 40 μg of C-CTX5, as estimated by quantitative NMR. A suite of 1D and 2D NMR experiments were acquired that verified the structure originally proposed for C-CTX5. The structural confirmation and successful isolation of C-CTX5 opens the way for work on the stability, toxicology and biotransformation of C-CTXs, as well as for the production of quantitative reference materials for analytical method development and validation. The strategies developed for purification of C-CTX5 may also apply to isolation and purification of CTXs from the Pacific Ocean and other regions.more » « less