skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A laser-assisted chlorination process for reversible writing of doping patterns in graphene
Chemical doping can be used to control the charge-carrier polarity and concentration in two-dimensional van der Waals materials. However, conventional methods based on substitutional doping or surface functionalization result in the degradation of electrical mobility due to structural disorder, and the maximum doping density is set by the solubility limit of dopants. Here we show that a reversible laser-assisted chlorination process can be used to create high doping concentrations (above 3 × 1013 cm−2) in graphene monolayers with minimal drops in mobility. The approach uses two lasers—with distinct photon energies and geometric configurations—that are designed for chlorination and subsequent chlorine removal, allowing highly doped patterns to be written and erased without damaging the graphene. To illustrate the capabilities of our approach, we use it to create rewritable photoactive junctions for graphene-based photodetectors.  more » « less
Award ID(s):
1662475 2024391
PAR ID:
10349973
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Electronics
ISSN:
2520-1131
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A major challenge for graphene applications is the lack of mass production technology for large‐scale and high‐quality graphene growth and transfer. Here, a roll‐to‐roll (R2R) dry transfer process for large‐scale graphene grown by chemical vapor deposition is reported. The process is fast, controllable, and environmentally benign. It avoids chemical contamination and allows the reuse of graphene growth substrates. By controlling tension and speed of the R2R dry transfer process, the electrical sheet resistance is achieved as 9.5 kΩ sq−1, the lowest ever reported among R2R dry transferred graphene samples. The R2R dry transferred samples are used to fabricate graphene‐based field‐effect transistors (GFETs) on polymer. It is demonstrated that these flexible GFETs feature a near‐zero doping level and a gate leakage current one to two orders of magnitude lower than those fabricated using wet‐chemical etched graphene samples. The scalability and uniformity of the R2R dry transferred graphene is further demonstrated by successfully transferring a 3 × 3 in2sample and measuring its field‐effect mobility with 36 millimeter‐scaled GFETs evenly spaced on the sample. The field‐effect mobility of the R2R dry transferred graphene is determined to be 205 ± 36 cm2 V−1
    more » « less
  2. Abstract The rational design of the electronic band structures and the associated properties (e.g. optical) of advanced materials has remained challenging for crucial applications in optoelectronics, solar desalination, advanced manufacturing technologies, etc. In this work, using first-principles calculations, we studied the prospects of tuning the absorption spectra of graphene via defect engineering, i.e. chemical doping and oxidation. Our computational analysis shows that graphene functionalization with single hydroxyl and carboxylic acid fails to open a band gap in graphene. While single epoxide functionalization successfully opens a bandgap in graphene and increases absorptivity, however, other optical properties such as reflection, transmission, and dielectric constants are significantly altered. Boron and nitrogen dopants lead to p- and n-type doping, respectively, while fluorine dopants or a single-carbon atomic vacancy cannot create a significant bandgap in graphene. By rigorously considering the spin-polarization effect, we find that titanium, zirconium, and hafnium dopants can create a bandgap in graphene via an induced flat band around the Fermi level as well as the collapse of the Dirac cone. In addition, silicon, germanium, and tin dopants are also effective in improving the optical characteristics. Our work is important for future experimental work on graphene for laser and optical processing applications. 
    more » « less
  3. Sodium- and potassium-ion batteries are one of the most promising electrical energy storage devices at low cost, but their inferior rate and capacity have hampered broader applications such as electric vehicles and grids. Carbon nanomaterials have been demonstrated to have ultrafast surface-dominated ion uptake to drastically increase the rate and capacity, but trial-and-error approaches are usually used to find desired anode materials from numerous candidates. Here, we developed guiding principles to rationally screen pseudocapacitive anodes from numerous candidate carbon materials to create ultrafast Na- and K-ion batteries. The transition from pseudocapacitive to metal-battery mechanisms on heteroatom-doped graphene in charging process was revealed by the density functional theory methods. The results show that the graphene substrate can guide the preferential growth of K and Na along graphene plane, which inhibits dendrite development effectively in the batteries. An intrinsic descriptor is discovered to establish a volcano-shaped relationship that correlates the capacity with the intrinsic physical qualities of the doping structures, from which the best anode materials could be predicted. The predictions are in good agreement with the experimental results. The strategies for enhancing both the power and energy densities are proposed based on the predictions and experiments for the batteries. 
    more » « less
  4. High mobility is a crucial requirement for a large variety of electronic device applications. The state of the art for high-quality graphene devices is based on heterostructures made with graphene encapsulated in >40 nm-thick flakes of hexagonal boron nitride (hBN). Unfortunately, scaling up multilayer hBN while precisely controlling the number of layers remains an outstanding challenge, resulting in a rough material unable to enhance the mobility of graphene. This leads to the pursuit of alternative, scalable materials, which can be used as substrates and encapsulants for graphene. Tungsten disulfide (WS2) is a transition metal dichalcogenide, which was grown in large (∼mm-size) multi-layers by chemical vapor deposition. However, the resistance vs gate voltage characteristics when gating graphene through WS2 exhibit largely hysteretic shifts of the charge neutrality point on the order of Δn∼ 3 × 1011 cm−2, hindering the use of WS2 as a reliable encapsulant. The hysteresis originates due to the charge traps from sulfur vacancies present in WS2. In this work, we report the use of WS2 as a substrate and overcome the hysteresis issues by chemically treating WS2 with a super-acid, which passivates these vacancies and strips the surface from contaminants. The hysteresis is significantly reduced by about two orders of magnitude, down to values as low as Δn∼ 2 × 109 cm−2, while the room-temperature mobility of WS2-encapsulated graphene is as high as ∼62 × 103 cm2 V−1 s−1 at a carrier density of n ∼ 1 ×1012 cm−2. Our results promote WS2 as a valid alternative to hBN as an encapsulant for high-performance graphene devices. 
    more » « less
  5. The implementation of aberration-corrected electron beam lithography (AC-EBL) in a 200 keV scanning transmission electron microscope (STEM) is a novel technique that could be used for the fabrication of quantum devices based on 2D atomic crystals with single nanometer critical dimensions, allowing to observe more robust quantum effects. In this work we study electron beam sculpturing of nanostructures on suspended graphene field effect transistors using AC-EBL, focusing on the in situ characterization of the impact of electron beam exposure on device electronic transport quality. When AC-EBL is performed on a graphene channel (local exposure) or on the outside vicinity of a graphene channel (non-local exposure), the charge transport characteristics of graphene can be significantly affected due to charge doping and scattering. While the detrimental effect of non-local exposure can be largely removed by vigorous annealing, local-exposure induced damage is irreversible and cannot be fixed by annealing. We discuss the possible causes of the observed exposure effects. Our results provide guidance to the future development of high-energy electron beam lithography for nanomaterial device fabrication. 
    more » « less