skip to main content


Title: In Situ Study of the Impact of Aberration-Corrected Electron-Beam Lithography on the Electronic Transport of Suspended Graphene Devices
The implementation of aberration-corrected electron beam lithography (AC-EBL) in a 200 keV scanning transmission electron microscope (STEM) is a novel technique that could be used for the fabrication of quantum devices based on 2D atomic crystals with single nanometer critical dimensions, allowing to observe more robust quantum effects. In this work we study electron beam sculpturing of nanostructures on suspended graphene field effect transistors using AC-EBL, focusing on the in situ characterization of the impact of electron beam exposure on device electronic transport quality. When AC-EBL is performed on a graphene channel (local exposure) or on the outside vicinity of a graphene channel (non-local exposure), the charge transport characteristics of graphene can be significantly affected due to charge doping and scattering. While the detrimental effect of non-local exposure can be largely removed by vigorous annealing, local-exposure induced damage is irreversible and cannot be fixed by annealing. We discuss the possible causes of the observed exposure effects. Our results provide guidance to the future development of high-energy electron beam lithography for nanomaterial device fabrication.  more » « less
Award ID(s):
1836707
NSF-PAR ID:
10152600
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Nanomaterials
Volume:
10
Issue:
4
ISSN:
2079-4991
Page Range / eLocation ID:
666
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Variable-pressure electron-beam lithography (VP-EBL) employs an ambient gas at subatmospheric pressures to reduce charging during electron-beam lithography. VP-EBL has been previously shown to eliminate pattern distortion and provide improved resolution when patterning poly(methyl methacrylate) (PMMA) on insulating substrates. However, it remains unknown how water vapor affects the contrast and clearing dose nor has the effect of water vapor on the negative-tone behavior of PMMA been studied. In addition, water vapor has recently been shown to alter the radiation chemistry of the VP-EBL process for Teflon AF. Such changes in radiation chemistry have not been explored for PMMA. In this work, VP-EBL was conducted on conductive substrates to study the effect of water vapor on PMMA patterning separately from the effects of charge dissipation. In addition, both positive and negative-tone processes were studied to determine the effect of water vapor on both chain scission and cross-linking. The contrast of PMMA was found to improve significantly with increasing water vapor pressure for both positive and negative-tone patterning. The clearing dose for positive-tone patterning increases moderately with vapor pressure as would be expected for electron scattering in a gas. However, the onset set dose for negative-tone patterning increased dramatically with pressure revealing a more significant change in the exposure mechanism. X-ray photoelectron spectra and infrared transmission spectra indicate that water vapor only slightly alters the composition of exposed PMMA. Also, electron scattering in water vapor yielded a much larger clear region around negative-tone patterns. This effect could be useful for increasing the range of the developed region around cross-linked PMMA beyond the backscattered electron range. Thus, VP-EBL for PMMA introduces a new means of tuning clearing/onset dose and contrast, while allowing additional control over the size of the cleared region around negative-tone patterns.

     
    more » « less
  2. Advances in solution-phase graphene patterning has provided a facile route for rapid, low-cost and scalable manufacturing of electrochemical devices, even on flexible substrates. While graphene possesses advantageous electrochemical properties of high surface area and fast heterogenous charge transport, these properties are attributed to the edge planes and defect sites, not the basal plane. Herein, we demonstrate enhancement of the electroactive nature of patterned solution-phase graphene by increasing the porosity and edge planes through the construction of a multidimensional architecture via salt impregnated inkjet maskless lithography (SIIML) and CO 2 laser annealing. Various sized macroscale pores (<25 to ∼250 μm) are patterned directly in the graphene surface by incorporating porogens ( i.e. , salt crystals) in the graphene ink which act as hard templates for pore formation and are later dissolved in water. Subsequently, microsized pores (∼100 nm to 2 μm in width) with edge plane defects are etched in the graphene lattice structure by laser annealing with a CO 2 laser, simultaneously improving electrical conductivity by nearly three orders of magnitude (sheet resistance decreases from >10 000 to ∼50 Ω sq −1 ). We demonstrate that this multidimensional porous graphene fabrication method can improve electrochemical device performance through design and manufacture of an electrochemical organophosphate biosensor that uses the enzyme acetylcholinesterase for detection. This pesticide biosensor exhibits enhanced sensitivity to acetylthiocholine compared to graphene without macropores (28.3 μA nM −1 to 13.3 μA nM −1 ) and when inhibited by organophosphate pesticides (paraoxon) has a wide linear range (10 nM to 500 nM), low limit of detection (0.6 nM), and high sensitivity (12.4 nA nM −1 ). Moreover, this fabrication method is capable of patterning complex geometries [ i.e. interdigitated electrodes (IDEs)] even on flexible surfaces as demonstrated by an IDE supercapacitor made of SIIML graphene on a heat sensitive polymer substrate. The supercapacitor demonstrates a high energy density of 0.25 mW h cm −3 at a power density of 0.3 W cm −3 . These electrochemical devices demonstrate the benefit of using SIIML and CO 2 laser annealing for patterning graphene electrodes with a multidimensional porous surface even on flexible substrates and is therefore a platform technology which could be applied to a variety of different biosensors and other electrochemical devices. 
    more » « less
  3. Tunneling field effect transistors (TFETs) have gained much interest in the previous decade for use in low power CMOS electronics due to their sub-thermal switching [1]. To date, all TFETs are fabricated as vertical nanowires or fins with long, difficult processes resulting in long learning cycle and incompatibility with modern CMOS processing. Because most TFETs are heterojunction TFETs (HJ-TFETs), the geometry of the device is inherently vertically because dictated by the orientation of the tunneling HJ, achieved by typical epitaxy. Template assisted selective epitaxy was demonstrated for vertical nanowires [2] and horizontally arranged nanorods [3] for III-V on Si integration. In this work, we report results on the area selective and template assisted epitaxial growth of InP, utilizing SiO2 based confined structures on InP substrates, which enables horizontal HJs, that can find application in the next generation of TFET devices. The geometries of the confined structures used are so that only a small area of the InP substrate, dubbed seed, is visible to the growth atmosphere. Growth is initiated selectively only at the seed and then proceeds in the hollow channel towards the source hole. As a result, growth resembles epitaxial lateral overgrowth from a single nucleation point [4], reaping the benefits of defect confinement and, contrary to spontaneous nanowire growth, allows orientation in an arbitrary, template defined direction. Indium phosphide 2-inch (110) wafers are used as the starting substrate. The process flow (Fig.1) consists of two plasma enhanced chemical vapor deposition (PECVD) steps of SiO2, appropriately patterned with electron beam lithography (EBL), around a PECVD amorphous silicon sacrificial layer. The sacrificial layer is ultimately wet etched with XeF2 to form the final, channel like template. Not shown in the schematic in Fig.1 is an additional, ALD deposited, 3 nm thick, alumina layer which prevents plasma damage to the starting substrate and is removed via a final tetramethylammonium hydroxide (TMAH) based wet etch. As-processed wafers were then diced and loaded in a Thomas Swan Horizontal reactor. Successful growth conditions found were 600°C with 4E6 mol/min of group III precursor, a V/III ratio of 400 and 8 lpm of hydrogen as carrier gas. Trimethylindium (TMIn) and tertiarybutylphosphine (TBP) were used as In and P precursors respectively. Top view SEM (Fig.2) confirms growth in the template thanks to sufficient Z-contrast despite the top oxide layer, not removed before imaging. TEM imaging shows a cross section of the confined structure taken at the seed hole (Fig.3). The initial growth interface suggests growth was initiated at the seed hole and atomic order of the InP conforms to the SiO2 template both at the seed and at the growth front. A sharp vertical facet is an encouraging result for the future development of vertical HJ based III-V semiconductor devices. 
    more » « less
  4. A unique confined lateral selective epitaxial growth (CLSEG) [1] technique for next generation semiconductor devices was demonstrated in [2, 3] and termed template assisted selective epitaxy (TASE). This technique is based on the formation of hollow confined structures that drive subsequent growth initiation only from a small area of the substrate exposed to the growth environment, dubbed a seed, and continued growth is forced within the template. This allows to arbitrarily determine the shape and orientation of the grown material and to form novel nano-electronic device structures. Here, results are reported on the fabrication of channel-like nanometer sized horizontal structures, and, the subsequent homoepitaxy of indium phosphide (InP) to demonstrate the potential for TASE to create vertical heterojunctions that could enable the next generation of tunnel field-effect transistors (TFETs) [4]. Templates were fabricated with a combination of e-beam lithography, PECVD deposition, resist patterning, and selective wet etches, on (100) n-type InP wafers. Homoepitaxy was done via MOVPE achieving growth selectivity with a growth temperature of 640°C, group III precursor molar rate of 4E-6 mol/min, a V/III ratio of 400. Trimethylindium (TMIn) and tertiarybutylphosphine (TBP) are used as indium and phosphorus precursors respectively. Characterization via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) was employed to determine the success of growth in the template, initiation at the “seed”, area selectivity, faceting at the growth front, and conformality to the template. Each die consisted in a parametric array of structures of varying characteristic sizes that allows, via growth-interrupt trials, to analyze confined growth behavior and how this deviates from bulk epitaxy. Initial data suggests growth rate suppression with increased channel length. MOVPE in these conditions is known to be mass transport limited [5], so this could be explained with the need for the precursors to diffusively cover longer distances. 
    more » « less
  5. Periodic diffractive elements known as metasurfaces constitute platform technology whereby exceptional optical properties, not attainable by conventional means, are attained. Generally, with increasing unit-cell complexity, there emerges a wider design space and bolstered functional capability. Advanced devices deploying elaborate unit cells are typically generated by electron-beam patterning which is a tedious, slow process not suitable for large surfaces and quick turnaround. Ameliorating this condition, we present a novel route towards facile fabrication of complex periodic metasurfaces based on sequential exposures by laser interference lithography. Our method is fast, cost-effective, and can be applied to large surface areas. It is enabled by precise control over periodicity and exposure energy. With it we have successfully patterned and fabricated one-dimensional (1D) and two-dimensional (2D) multipart unit cell devices as demonstrated here. Thus, zero-order transmission spectra of an etched four-part 1D grating device are simulated and measured for both transverse-electric (TE) and transverse-magnetic (TM) polarization states of normally incident light. We confirm non-resonant wideband antireflection (∼800 nm) for TM-polarized light and resonance response for TE-polarized light in the near-IR band spanning 1400-2200 nm in a ∼100 mm2device. Furthermore, it is shown that this method of fabrication can be implemented not only to pattern periodic symmetric/asymmetric designs but also to realize non-periodic metasurfaces. The method will be useful in production of large-area photonic devices in the realm of nanophotonics and microphotonics.

     
    more » « less