skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ozone depletion due to dust release of iodine in the free troposphere
Iodine is an atmospheric trace element emitted from oceans that efficiently destroys ozone (O 3 ). Low O 3 in airborne dust layers is frequently observed but poorly understood. We show that dust is a source of gas-phase iodine, indicated by aircraft observations of iodine monoxide (IO) radicals inside lofted dust layers from the Atacama and Sechura Deserts that are up to a factor of 10 enhanced over background. Gas-phase iodine photochemistry, commensurate with observed IO, is needed to explain the low O 3 inside these dust layers (below 15 ppbv; up to 75% depleted). The added dust iodine can explain decreases in O 3 of 8% regionally and affects surface air quality. Our data suggest that iodate reduction to form volatile iodine species is a missing process in the geochemical iodine cycle and presents an unrecognized aeolian source of iodine. Atmospheric iodine has tripled since 1950 and affects ozone layer recovery and particle formation.  more » « less
Award ID(s):
2027252
PAR ID:
10349978
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
7
Issue:
52
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Previous efforts to measure atmospheric iodine have focused on marine and coastal regions. We report the first ground‐based tropospheric iodine monoxide (IO) radical observations over the central continental United States. Throughout April 2022, IO columns above Storm Peak Laboratory, Colorado (3,220 m.a.s.l.) ranged from 0.7 ± 0.5 to 3.6 ± 0.5 × 1012(average: 1.9 × 1012 molec cm−2). IO was consistently elevated in air masses transported from over the Pacific Ocean. The observed IO columns were up to three times higher and the range was larger than predicted by a global model, which warrants further investigation into iodine sources, sinks, ozone loss, and particle formation. IO mixing ratios increased with altitude. At the observed levels, iodine may be competitive with bromine as an oxidant of elemental mercury at cold temperatures typical of the free troposphere. Iodine‐induced mercury oxidation is missing in atmospheric models, understudied, and helps explain model underestimation of oxidized mercury measurements. 
    more » « less
  2. Abstract Iodine is a reactive trace element in atmospheric chemistry that destroys ozone and nucleates particles. Iodine emissions have tripled since 1950 and are projected to keep increasing with rising O 3 surface concentrations. Although iodic acid (HIO 3 ) is widespread and forms particles more efficiently than sulfuric acid, its gas-phase formation mechanism remains unresolved. Here, in CLOUD atmospheric simulation chamber experiments that generate iodine radicals at atmospherically relevant rates, we show that iodooxy hypoiodite, IOIO, is efficiently converted into HIO 3 via reactions (R1) IOIO + O 3  → IOIO 4 and (R2) IOIO 4  + H 2 O → HIO 3  + HOI +  (1) O 2 . The laboratory-derived reaction rate coefficients are corroborated by theory and shown to explain field observations of daytime HIO 3 in the remote lower free troposphere. The mechanism provides a missing link between iodine sources and particle formation. Because particulate iodate is readily reduced, recycling iodine back into the gas phase, our results suggest a catalytic role of iodine in aerosol formation. 
    more » « less
  3. The distribution of iodine in the surface ocean – of which iodide-iodine is a large destructor of tropospheric ozone (O3) – can be attributed to bothin situ(i.e., biological) andex situ(i.e., mixing) drivers. Currently, uncertainty regarding the rates and mechanisms of iodide (I-) oxidation render it difficult to distinguish the importance ofin situreactions vsex situmixing in driving iodine’s distribution, thus leading to uncertainty in climatological ozone atmospheric models. It has been hypothesized that reactive oxygen species (ROS), such as superoxide (O2•−) or hydrogen peroxide (H2O2), may be needed for I-oxidation to occur at the sea surface, but this has yet to be demonstrated in natural marine waters. To test the role of ROS in iodine redox transformations, shipboard isotope tracer incubations were conducted as part of the Bermuda Atlantic Time Series (BATS) in the Sargasso Sea in September of 2018. Incubation trials evaluated the effects of ROS (O2•−, H2O2) on iodine redox transformations over time and at euphotic and sub-photic depths. Rates of I-oxidation were assessed using a129I-tracer (t1/2~15.7 Myr) added to all incubations, and129I/127I ratios of individual iodine species (I-, IO3-). Our results show a lack of I-oxidation to IO3-within the resolution of our tracer approach – i.e., <2.99 nM/day, or <1091.4 nM/yr. In addition, we present new ROS data from BATS and compare our iodine speciation profiles to that from two previous studies conducted at BATS, which demonstrate long-term iodine stability. These results indicate thatex situprocesses, such as vertical mixing, may play an important role in broader iodine species’ distribution in this and similar regions. 
    more » « less
  4. We present a simulation of the global present-day composition of the troposphere which includes the chemistry of halogens (Cl, Br, I). Building on previous work within the GEOS-Chem model we include emissions of inorganic iodine from the oceans, anthropogenic and biogenic sources of halogenated gases, gas phase chemistry, and a parameterised approach to heterogeneous halogen chemistry. Consistent with Schmidt et al. (2016) we do not include sea-salt debromination. Observations of halogen radicals (BrO, IO) are sparse but the model has some skill in reproducing these. Modelled IO shows both high and low biases when compared to different datasets, but BrO concentrations appear to be modelled low. Comparisons to the very sparse observations dataset of reactive Cl species suggest the model represents a lower limit of the impacts of these species, likely due to underestimates in emissions and therefore burdens. Inclusion of Cl, Br, and I results in a general improvement in simulation of ozone (O3) concentrations, except in polar regions where the model now underestimates O3 concentrations. Halogen chemistry reduces the global tropospheric O3 burden by 18.6 %, with the O3 lifetime reducing from 26 to 22 days. Global mean OH concentrations of 1.28  ×  106 molecules cm−3 are 8.2 % lower than in a simulation without halogens, leading to an increase in the CH4 lifetime (10.8 %) due to OH oxidation from 7.47 to 8.28 years. Oxidation of CH4 by Cl is small (∼  2 %) but Cl oxidation of other VOCs (ethane, acetone, and propane) can be significant (∼  15–27 %). Oxidation of VOCs by Br is smaller, representing 3.9 % of the loss of acetaldehyde and 0.9 % of the loss of formaldehyde. 
    more » « less
  5. Iodine intersects with the marine biogeochemical cycles of several major elements and can influence air quality through reactions with tropospheric ozone. Iodine is also an element of interest in paleoclimatology, whereby iodine-to-calcium ratios in marine carbonates are widely used as a proxy for past ocean redox state. While inorganic iodine in seawater is found predominantly in its reduced and oxidized anionic forms, iodide (I) and iodate (IO3), the rates, mechanisms and intermediate species by which iodine cycles between these inorganic pools are poorly understood. Here, we address these issues by characterizing the speciation, composition and cycling of iodine in the upper 1,000 m of the water column at Station ALOHA in the subtropical North Pacific Ocean. We first obtained high-precision profiles of iodine speciation using isotope dilution and anion exchange chromatography, with measurements performed using inductively coupled plasma mass spectrometry (ICP-MS). These profiles indicate an apparent iodine deficit in surface waters approaching 8% of the predicted total, which we ascribe partly to the existence of dissolved organic iodine that is not resolved during chromatography. To test this, we passed large volumes of seawater through solid phase extraction columns and analyzed the eluent using high-performance liquid chromatography ICP-MS. These analyses reveal a significant pool of dissolved organic iodine in open ocean seawater, the concentration and complexity of which diminish with increasing water depth. Finally, we analyzed the rates of IO3formation using shipboard incubations of surface seawater amended with129I. These experiments suggest that intermediate iodine species oxidize to IO3much faster than Idoes, and that rates of IO3formation are dependent on the presence of particles, but not light levels. Our study documents the dynamics of iodine cycling in the subtropical ocean, highlighting the critical role of intermediates in mediating redox transformations between the major inorganic iodine species. 
    more » « less