Carbon dioxide (CO2) has long been recognized as an ideal C1 feedstock comonomer for producing sustainable materials because it is renewable, abundant, and cost-effective. However, activating CO2 presents a significant challenge because it is highly oxidized and stable. A CO2/butadiene-derived δ-valerolactone (EVP), generated via palladium-catalyzed telomerization between CO2 and butadiene, has emerged as an attractive intermediate for producing sustainable copolymers from CO2 and butadiene. Owing to the presence of two active carbon–carbon double bonds and a lactone unit, EVP serves as a versatile intermediate for creating sustainable copolymers with a CO2 content of up to 29 wt % (33 mol %). In this Review, advances in the synthesis of copolymers from CO2 and butadiene with divergent structures through various polymerization protocols have been summarized. Achievements made in homo- and copolymerization of EVP or its derivatives are comprehensively reviewed, while the postmodification of the obtained copolymers to access new polymers are also discussed. Meanwhile, potential applications of the obtained copolymers are also discussed. The literature references were sorted into sections based on polymerization strategies and mechanisms, facilitating readers in gaining a comprehensive view of the present chemistry landscape and inspiring innovative approaches to synthesizing novel CO2-derived copolymers.
more »
« less
3-Ethyl-6-vinyltetrahydro-2H-pyran-2-one (EVP): a versatile CO2-derived lactone platform for polymer synthesis.
3-ethyl-6-vinyltetrahydro-2H-pyran-2-one (EVP) is a CO2-derived lactone synthesized via Pd-catalyzed telomerization of butadiene. As EVP is 28.9% by weight CO2, it has received significant recent attention as an intermediary for the synthesis of high CO2-content polymers. This article provides an overview of strategies for the polymerization of EVP to a wide variety of polymer structures, ranging from radical polymerizations to ring-opening polymerizations, that each take unique advantage of the highly functionalized lactone.
more »
« less
- Award ID(s):
- 1901635
- PAR ID:
- 10350017
- Date Published:
- Journal Name:
- Chemical Communications
- ISSN:
- 1359-7345
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Carbon dioxide is inexpensive and abundant, and its prevalence as waste makes it attractive as a sustainable chemical feedstock. Although there are examples of copolymerizations of CO2 with high-energy monomers, the direct copolymerization of CO2 with olefins has not been reported. Herein, an alternate route to functionalizable, recyclable polyesters derived from CO2, butadiene and hydrogen via an intermediary lactone, 3-ethyl-6-vinyltetrahydro-2H-pyran-2-one, is described. Catalytic ring-opening polymerization of the lactone by 1,5,7-triazabicyclo[4.4.0]dec-5-ene yields polyesters with molar masses up to 13.6 kg/mol and pendent vinyl sidechains that can undergo post-polymerization functionalization. The polymer has a low ceiling temperature of 138 ºC, allowing for facile chemical recycling, and is inherently biodegradable under aerobic aqueous conditions (OECD-301B protocol). These results mark the first example of a well-defined polyester derived from CO2, olefins and hydrogen, expanding access to new polymer feedstocks that were once considered unfeasible.more » « less
-
Summary In this paper, a three‐dimensional numerical solver is developed for suspensions of rigid and soft particles and droplets in viscoelastic and elastoviscoplastic (EVP) fluids. The presented algorithm is designed to allow for the first time three‐dimensional simulations of inertial and turbulent EVP fluids with a large number particles and droplets. This is achieved by combining fast and highly scalable methods such as an FFT‐based pressure solver, with the evolution equation for non‐Newtonian (including EVP) stresses. In this flexible computational framework, the fluid can be modeled by either Oldroyd‐B, neo‐Hookean, FENE‐P, or Saramito EVP models, and the additional equations for the non‐Newtonian stresses are fully coupled with the flow. The rigid particles are discretized on a moving Lagrangian grid, whereas the flow equations are solved on a fixed Eulerian grid. The solid particles are represented by an immersed boundary method with a computationally efficient direct forcing method, allowing simulations of a large numbers of particles. The immersed boundary force is computed at the particle surface and then included in the momentum equations as a body force. The droplets and soft particles on the other hand are simulated in a fully Eulerian framework, the former with a level‐set method to capture the moving interface and the latter with an indicator function. The solver is first validated for various benchmark single‐phase and two‐phase EVP flow problems through comparison with data from the literature. Finally, we present new results on the dynamics of a buoyancy‐driven drop in an EVP fluid.more » « less
-
The coupling of carbon dioxide and ethylene to generate value added chemicals has been part of recent fundamental advances to improve sustainability in commercial chemical synthons. A formal zerovalent triphosphine ligated ruthenium complex, (tBuP(CH2CH2PEt2)2)Ru(κ-S-DMSO)(C2H4), was found to promote CO2 activation, affording products derived from both a 1:1 and 1:2 ethylene to CO2 coupling stoichiometry. The equimolecular coupling reaction selectively afforded a five-membered ruthenium lactone species, (tBuP(CH2CH2PEt2)2)Ru(κ-S-DMSO)(κ-C,κ-O-CH2CH2CO2), under low CO2 pressure. At higher CO2 pressure, the ruthenium lactone complex activated a second equivalent of CO2, yielding a dimeric methylmalonate ruthenium compound, [(tBuP(CH2CH2PEt2)2)Ru(μ2, κ1-O, κ2-O,O-O2CCHCH3CO2)]2. Both carbon dioxide activation products were characterized by X-ray diffraction. Preliminary mechanistic studies suggest that reversible β-H elimination is a key process in conversion between the two ruthenium carboxylate species. A rare formally zerovalent ruthenium coordination compound stabilized only by ethylene and DMSO ligands was also isolated and characterized.more » « less
-
Sixth-order boundary value problems (BVPs) arise in thin-film flows with a surface that has elastic bending resistance. We consider the case in which the elastic interface is clamped at the lateral walls of a closed trough and thus encloses a finite amount of fluid. For a slender film undergoing infinitesimal deformations, the displacement of the elastic surface from its initial equilibrium position obeys a sixth-order (in space) initial boundary value problem (IBVP). To solve this IBVP, we construct a set of odd and even eigenfunctions that intrinsically satisfy the boundary conditions (BCs) of the original IBVP. These eigenfunctions are the solutions of a non-self-adjoint sixth-order eigenvalue problem (EVP). To use the eigenfunctions for series expansions, we also construct and solve the adjoint EVP, leading to another set of even and odd eigenfunctions, which are orthogonal to the original set (biorthogonal). The eigenvalues of the adjoint EVP are the same as those of the original EVP, and we find accurate asymptotic formulas for them. Next, employing the biorthogonal sets of eigenfunctions, a Petrov–Galerkin spectral method for sixth-order problems is proposed, which can also handle lower-order terms in the IBVP. The proposed method is tested on two model sixth-order BVPs, which admit exact solutions. We explicitly derive all the necessary formulas for expanding the quantities that appear in the model problems into the set(s) of eigenfunctions. For both model problems, we find that the approximate Petrov–Galerkin spectral solution is in excellent agreement with the exact solution. The convergence rate of the spectral series is rapid, exceeding the expected sixth-order algebraic rate.more » « less
An official website of the United States government

