Abstract This work presents a method for the topology optimization of welded frame structures to minimize the manufacturing cost. The structures considered here consist of assemblies of geometric primitives such as bars and plates that are common in welded frame construction. A geometry projection technique is used to map the primitives onto a continuous density field that is subsequently used to interpolate material properties. As in density-based topology optimization techniques, the ensuing ersatz material is used to perform the structural analysis on a fixed mesh, thereby circumventing the need for re-meshing upon design changes. The distinct advantage of the representation by geometric primitives is the ease of computation of the manufacturing cost in terms of the design parameters, while the geometry projection facilitates the analysis within a continuous design region. The proposed method is demonstrated via the manufacturing-cost-minimization subject to a displacement constraint of 2D bar, 3D bar, and plate structures.
more »
« less
THE USE OF TOPOLOGY OPTIMIZATION IN ENHANCING THE STRUCTURAL PROPERTY OF AN AUTOMOTIVE FRONT SUB-FRAME
The frontal impact is the most common in automotive collision accidents, and bending the sub-frame can directly lead to severe passenger injury and property damage. This research analyzed the crashworthiness, design, mechanical integrity, and optimization of an automotive front sub-frame structure. From the original geometry, a new sub-frame with similar mass and mounting locations is designed. Loads were applied to the front side members of the sub-frame to simulate a common frontal and partial frontal crash. A sub-frame with enhanced structural efficiency was designed using topology optimization. This improvement may preserve the lifespan of the sub-frame, reinforce the protection of passengers and the engine, and improve crashworthiness. Topology optimization is a numerical analysis technique that allows engineers to distribute materials optimally for a specific cost function. Iterative update of design variables typically relies on sensitivity information from performance analysis in each step. A simple parametric study on material candidates and design constraints was executed to evaluate various design options. Sub-frames with optimized geometries were mechanically tested against two different simplified loads mimicking frontal crashes. The dynamic behaviors were also analyzed and compared to the original design for validation.
more »
« less
- Award ID(s):
- 2107140
- PAR ID:
- 10350024
- Date Published:
- Journal Name:
- Zone 1 Conference of the American Society for Engineering Education
- ISSN:
- 2332-368X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This work presents a new method for efficiently designing loads and supports simultaneously with material distribution in density-based topology optimization. We use a higher-order or super-Gaussian function to parameterize the shapes, locations, and orientations of mechanical loads and supports. With a distance function as an input, the super-Gaussian function projects smooth geometric shapes which can be used to model various types of boundary conditions using minimal numbers of additional design variables. As examples, we use the proposed formulation to model both concentrated and distributed loads and supports. We also model movable non-design regions of predetermined solid shapes using the same distance functions and design variables as the variable boundary conditions. Computing the design sensitivities using the adjoint sensitivity analysis method, we implement the technique in a 2D topology optimization algorithm with linear elasticity and demonstrate the improvements that the super-Gaussian projection method makes to some common benchmark problems. By allowing the optimizer to move the loads and supports throughout the design domain, the method produces significant enhancements to structures such as compliant mechanisms where the locations of the input load and fixed supports have a large effect on the magnitude of the output displacements.more » « less
-
Abstract In this article, we present a design methodology for resonant structures exhibiting particular dynamic responses by combining an eigenfrequency matching approach and a harmonic analysis-informed eigenmode identification strategy. This systematic design methodology, based on topology optimization, introduces a novel computationally efficient approach for 3D dynamic problems requiring antiresonances at specific target frequencies subject to specific harmonic loads. The optimization’s objective function minimizes the error between target antiresonance frequencies and the actual structure’s antiresonance eigenfrequencies, while the harmonic analysis-informed identification strategy compares harmonic displacement responses against eigenvectors using a modal assurance criterion, therefore ensuring an accurate recognition and selection of appropriate antiresonance eigenmodes used during the optimization process. At the same time, this method effectively prevents well-known problems in topology optimization of eigenfrequencies such as localized eigenmodes in low-density regions, eigenmodes switching order, and repeated eigenfrequencies. Additionally, our proposed localized eigenmode identification approach completely removes the spurious eigenmodes from the optimization problem by analyzing the eigenvectors’ response in low-density regions compared to high-density regions. The topology optimization problem is formulated with a density-based parametrization and solved with a gradient-based sequential linear programming method, including material interpolation models and topological filters. Two case studies demonstrate that the proposed design methodology successfully generates antiresonances at the desired target frequency subject to different harmonic loads, design domain dimensions, mesh discretization, or material properties.more » « less
-
A controlled vocabulary list that was originally developed for the automotive assembly environment was modified for home appliance assembly in this study. After surveying over 700 assembly tasks with the original vocabulary, additions were made to the vocabulary list as necessary. The vocabulary allowed for the transformation of work instructions in approximately 90% of cases, with the most discrepancies occurring during the inspection phase of the transfer line. The modified vocabulary list was then tested for coder reliability to ensure broad usability and was found to have Cohen’s kappa values of 0.671 < κ < 0.848 between coders and kappa values of 0.731 < κ < 0.875 within coders over time. Using this analysis, it was demonstrated that this original automotive vocabulary could be applied to the non-automotive context with a high degree of reliability and consistency.more » « less
-
ABSTRACT A trithiol‐triacrylate gel system for frontal polymerization was explored to establish the gelation time, shelf life, and frontal kinetics. The free‐standing gels were created by triethylamine‐catalyzed Michael addition of trimethylolpropane tris(3‐mercaptopropionate) to trimethylolpropane triacrylate such that sufficient acrylate functional groups were left unreacted to allow free‐radical frontal polymerization with the initiator 1,1‐bis(tert‐butylperoxy)‐3,3,5‐trimethylcyclohexane (Luperox 231). Systems with gelation times between 30 and 60 min that support frontal polymerization after up to 28 days of storage were achieved. The front velocity was found to depend on the 1,1‐bis(tert‐butylperoxy)‐3,3,5‐trimethylcyclohexane concentration. However, the amount of triethylamine, which was used to catalyze gel formation, did not significantly affect front velocity. The gel diameter and addition of milled carbon fiber (Zoltek px35) affected the front velocity. Cracks during frontal polymerization were reduced when Zoltek px35 was added to the formulation, which also increased the mechanical strength. Complex geometries of free‐standing gels were successfully polymerized. This system is potentially useful in situations where molding and reshaping gels are required prior to frontal polymerization, as well as enabling the ability to examine how mechanical forces like stretching and compression can affect front kinetics.more » « less
An official website of the United States government

