skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Topology optimization with variable loads and supports using a super-Gaussian projection function
This work presents a new method for efficiently designing loads and supports simultaneously with material distribution in density-based topology optimization. We use a higher-order or super-Gaussian function to parameterize the shapes, locations, and orientations of mechanical loads and supports. With a distance function as an input, the super-Gaussian function projects smooth geometric shapes which can be used to model various types of boundary conditions using minimal numbers of additional design variables. As examples, we use the proposed formulation to model both concentrated and distributed loads and supports. We also model movable non-design regions of predetermined solid shapes using the same distance functions and design variables as the variable boundary conditions. Computing the design sensitivities using the adjoint sensitivity analysis method, we implement the technique in a 2D topology optimization algorithm with linear elasticity and demonstrate the improvements that the super-Gaussian projection method makes to some common benchmark problems. By allowing the optimizer to move the loads and supports throughout the design domain, the method produces significant enhancements to structures such as compliant mechanisms where the locations of the input load and fixed supports have a large effect on the magnitude of the output displacements.  more » « less
Award ID(s):
2311078
PAR ID:
10568824
Author(s) / Creator(s):
;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Structural and Multidisciplinary Optimization
Volume:
65
Issue:
2
ISSN:
1615-147X
Subject(s) / Keyword(s):
Topology Optimization Compliant Mechanisms Design of Loads Design of Supports Boundary Condition Optimization Geometry Projection
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT In topology optimization of compliant mechanisms, the specific placement of boundary conditions strongly affects the resulting material distribution and performance of the design. At the same time, the most effective locations of the loads and supports are often difficult to find manually. This substantially limits topology optimization's effectiveness for many mechanism design problems. We remove this limitation by developing a method which automatically determines optimal positioning of a prescribed input displacement and a set of supports simultaneously with an optimal material layout. Using nonlinear elastic physics, we synthesize a variety of compliant mechanisms with large output displacements, snap‐through responses, and prescribed output paths, producing designs with significantly improved performance in every case tested. Compared to optimal designs generated using manually designed boundary conditions used in previous studies, the mechanisms presented in this paper see performance increases ranging from 47% to 380%. The results show that nonlinear mechanism responses may be particularly sensitive to boundary condition locations and that effective placements can be difficult to find without an automated method. 
    more » « less
  2. We present a topology optimization method based on the geometry projection technique for the design of frames made of structural shapes. An equivalent-section approach is formulated that represents the cross-section of the structural shapes as a homogeneous rectangular section. The accuracy of this approach is demonstrated by comparison to analyses performed using body-fitted meshes of the original sections for different loads and boundary conditions. A novel geometric representation is also introduced to represent the equivalent section as a cuboid. Like offset solids, this representation is endowed with an explicit expression for the computation of the signed distance to the boundary of the primitive and of its sensitivities, allowing for an efficient implementation. An overlap constraint is imposed via the formulation of auxiliary primitives associated to the structural members, which guarantees the resulting designs do not exhibit impractical intersections of primitives that would preclude their construction. The efficacy and efficiency of the method is demonstrated via 2D and 3D design examples. The examples demonstrate that the proposed method renders optimal designs and exhibits good convergence. They also illustrate the ability to design structures with far lower optimal volume fractions than those typically employed in continuum topology optimization techniques. 
    more » « less
  3. Abstract Topology optimization has been proved to be an automatic, efficient and powerful tool for structural designs. In recent years, the focus of structural topology optimization has evolved from mono-scale, single material structural designs to hierarchical multimaterial structural designs. In this research, the multi-material structural design is carried out in a concurrent parametric level set framework so that the structural topologies in the macroscale and the corresponding material properties in mesoscale can be optimized simultaneously. The constructed cardinal basis function (CBF) is utilized to parameterize the level set function. With CBF, the upper and lower bounds of the design variables can be identified explicitly, compared with the trial and error approach when the radial basis function (RBF) is used. In the macroscale, the ‘color’ level set is employed to model the multiple material phases, where different materials are represented using combined level set functions like mixing colors from primary colors. At the end of this optimization, the optimal material properties for different constructing materials will be identified. By using those optimal values as targets, a second structural topology optimization is carried out to determine the exact mesoscale metamaterial structural layout. In both the macroscale and the mesoscale structural topology optimization, an energy functional is utilized to regularize the level set function to be a distance-regularized level set function, where the level set function is maintained as a signed distance function along the design boundary and kept flat elsewhere. The signed distance slopes can ensure a steady and accurate material property interpolation from the level set model to the physical model. The flat surfaces can make it easier for the level set function to penetrate its zero level to create new holes. After obtaining both the macroscale structural layouts and the mesoscale metamaterial layouts, the hierarchical multimaterial structure is finalized via a local-shape-preserving conformal mapping to preserve the designed material properties. Unlike the conventional conformal mapping using the Ricci flow method where only four control points are utilized, in this research, a multi-control-point conformal mapping is utilized to be more flexible and adaptive in handling complex geometries. The conformally mapped multi-material hierarchical structure models can be directly used for additive manufacturing, concluding the entire process of designing, mapping, and manufacturing. 
    more » « less
  4. The frontal impact is the most common in automotive collision accidents, and bending the sub-frame can directly lead to severe passenger injury and property damage. This research analyzed the crashworthiness, design, mechanical integrity, and optimization of an automotive front sub-frame structure. From the original geometry, a new sub-frame with similar mass and mounting locations is designed. Loads were applied to the front side members of the sub-frame to simulate a common frontal and partial frontal crash. A sub-frame with enhanced structural efficiency was designed using topology optimization. This improvement may preserve the lifespan of the sub-frame, reinforce the protection of passengers and the engine, and improve crashworthiness. Topology optimization is a numerical analysis technique that allows engineers to distribute materials optimally for a specific cost function. Iterative update of design variables typically relies on sensitivity information from performance analysis in each step. A simple parametric study on material candidates and design constraints was executed to evaluate various design options. Sub-frames with optimized geometries were mechanically tested against two different simplified loads mimicking frontal crashes. The dynamic behaviors were also analyzed and compared to the original design for validation. 
    more » « less
  5. null (Ed.)
    Abstract The data-driven approach is emerging as a promising method for the topological design of multiscale structures with greater efficiency. However, existing data-driven methods mostly focus on a single class of microstructures without considering multiple classes to accommodate spatially varying desired properties. The key challenge is the lack of an inherent ordering or “distance” measure between different classes of microstructures in meeting a range of properties. To overcome this hurdle, we extend the newly developed latent-variable Gaussian process (LVGP) models to create multi-response LVGP (MR-LVGP) models for the microstructure libraries of metamaterials, taking both qualitative microstructure concepts and quantitative microstructure design variables as mixed-variable inputs. The MR-LVGP model embeds the mixed variables into a continuous design space based on their collective effects on the responses, providing substantial insights into the interplay between different geometrical classes and material parameters of microstructures. With this model, we can easily obtain a continuous and differentiable transition between different microstructure concepts that can render gradient information for multiscale topology optimization. We demonstrate its benefits through multiscale topology optimization with aperiodic microstructures. Design examples reveal that considering multiclass microstructures can lead to improved performance due to the consistent load-transfer paths for micro- and macro-structures. 
    more » « less