skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Combining spectral clustering and large cut algorithms to find compensatory functional modules from yeast physical and genetic interaction data with GLASS
Various algorithmic and statistical approaches have been proposed to uncover functionally coherent network motifs consisting of sets of genes that may occur as compensatory pathways (called Between Pathway Modules, or BPMs) in a high-throughput S. Cerevisiae genetic interaction network. We extend our previous Local-Cut/Genecentric method to also make use of a spectral clustering of the physical interaction network, and uncover some interesting new fault-tolerant modules.  more » « less
Award ID(s):
1934553
PAR ID:
10350061
Author(s) / Creator(s):
;
Date Published:
Journal Name:
BCB '22: Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Identifying genes that interact to confer a biological function to an organism is one of the main goals of functional genomics. High‐throughput technologies for assessment and quantification of genome‐wide gene expression patterns have enabled systems‐level analyses to infer pathways or networks of genes involved in different functions under many different conditions. Here, we leveraged the publicly available, information‐rich RNA‐Seq datasets of the model plantArabidopsis thalianato construct a gene co‐expression network, which was partitioned into clusters or modules that harbor genes correlated by expression. Gene ontology and pathway enrichment analyses were performed to assess functional terms and pathways that were enriched within the different gene modules. By interrogating the co‐expression network for genes in different modules that associate with a gene of interest, diverse functional roles of the gene can be deciphered. By mapping genes differentially expressing under a certain condition inArabidopsisonto the co‐expression network, we demonstrate the ability of the network to uncover novel genes that are likely transcriptionally active but prone to be missed by standard statistical approaches due to their falling outside of the confidence zone of detection. To our knowledge, this is the firstA. thalianaco‐expression network constructed using the entire mRNA‐Seq datasets (>20,000) available at the NCBI SRA database. The developed network can serve as a useful resource for theArabidopsisresearch community to interrogate specific genes of interest within the network, retrieve the respective interactomes, decipher gene modules that are transcriptionally altered under certain condition or stage, and gain understanding of gene functions. 
    more » « less
  2. null (Ed.)
    Biological diversity depends on multiple, cooccurring ecological interactions. However, most studies focus on one interaction type at a time, leaving community ecologists unsure of how positive and negative associations among species combine to influence biodiversity patterns. Using surveys of plant populations in alpine communities worldwide, we explore patterns of positive and negative associations among triads of species (modules) and their relationship to local biodiversity. Three modules, each incorporating both positive and negative associations, were overrepresented, thus acting as "network motifs." Furthermore, the overrepresentation of these network motifs is positively linked to species diversity globally. A theoretical model illustrates that these network motifs, based on competition between facilitated species or facilitation between inferior competitors, increase local persistence. Our findings suggest that the interplay of competition and facilitation is crucial for maintaining biodiversity. 
    more » « less
  3. Abstract MotivationHigher-order interaction patterns among proteins have the potential to reveal mechanisms behind molecular processes and diseases. While clustering methods are used to identify functional groups within molecular interaction networks, these methods largely focus on edge density and do not explicitly take into consideration higher-order interactions. Disease genes in these networks have been shown to exhibit rich higher-order structure in their vicinity, and considering these higher-order interaction patterns in network clustering have the potential to reveal new disease-associated modules. ResultsWe propose a higher-order community detection method which identifies community structure in networks with respect to specific higher-order connectivity patterns beyond edges. Higher-order community detection on four different protein–protein interaction networks identifies biologically significant modules and disease modules that conventional edge-based clustering methods fail to discover. Higher-order clusters also identify disease modules from genome-wide association study data, including new modules that were not discovered by top-performing approaches in a Disease Module DREAM Challenge. Our approach provides a more comprehensive view of community structure that enables us to predict new disease–gene associations. Availability and implementationhttps://github.com/Reed-CompBio/graphlet-clustering. 
    more » « less
  4. There is an increasing demand for developing new metrics that can effectively measure the physical demand experienced by users in augmented reality (AR) environments. In this study, we evaluated one of the recent metrics, called “slouching score,” in an AR-based biomechanics lecture. This study aims to uncover the correlation between the AR interaction and the physical demand of users in a different setup compared to the earlier study. The slouching score, which evaluates posture changes that may indicate fatigue during AR interactions, is measured using Xsens motion capture equipment. These calculated scores are compared with responses to physical demand assessments surveyed using NASA-TLX questionnaires. One of the key differences between the current study and earlier ones is that participants had to physically move to access the next AR module in earlier studies. In contrast, this time, participants simply needed to click a virtual arrow button to view the next AR modules, eliminating the need for physical movement. Our preliminary findings show correlations between the slouching score from some modules and the NASA-TLX physical demand ratings. 
    more » « less
  5. This paper presents a mobile-based solution that integrates 3D vision and voice interaction to assist people who are blind or have low vision to explore and interact with their surroundings. The key components of the system are the two 3D vision modules: the 3D object detection module integrates a deep-learning based 2D object detector with ARKit-based point cloud generation, and an interest direction recognition module integrates hand/finger recognition and ARKit-based 3D direction estimation. The integrated system consists of a voice interface, a task scheduler, and an instruction generator. The voice interface contains a customized user request mapping module that maps the user’s input voice into one of the four primary system operation modes (exploration, search, navigation, and settings adjustment). The task scheduler coordinates with two web services that host the two vision modules to allocate resources for computation based on the user request and network connectivity strength. Finally, the instruction generator computes the corresponding instructions based on the user request and results from the two vision modules. The system is capable of running in real time on mobile devices. We have shown preliminary experimental results on the performance of the voice to user request mapping module and the two vision modules. 
    more » « less