skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Network motifs involving both competition and facilitation predict biodiversity in alpine plant communities
Biological diversity depends on multiple, cooccurring ecological interactions. However, most studies focus on one interaction type at a time, leaving community ecologists unsure of how positive and negative associations among species combine to influence biodiversity patterns. Using surveys of plant populations in alpine communities worldwide, we explore patterns of positive and negative associations among triads of species (modules) and their relationship to local biodiversity. Three modules, each incorporating both positive and negative associations, were overrepresented, thus acting as "network motifs." Furthermore, the overrepresentation of these network motifs is positively linked to species diversity globally. A theoretical model illustrates that these network motifs, based on competition between facilitated species or facilitation between inferior competitors, increase local persistence. Our findings suggest that the interplay of competition and facilitation is crucial for maintaining biodiversity.  more » « less
Award ID(s):
1757351
PAR ID:
10228689
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
6
ISSN:
0027-8424
Page Range / eLocation ID:
e2005759118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High host biodiversity is hypothesized to dilute the risk of vector‐borne diseases if many host species are ‘dead ends' that cannot effectively transmit the disease and low‐diversity areas tend to be dominated by competent host species. However, many studies on biodiversity–disease relationships characterize host biodiversity at single, local spatial scales, which complicates efforts to forecast disease risk if associations between host biodiversity and disease change with spatial scale. Here, our objective is to evaluate the spatial scaling of relationships between host biodiversity andBorrelia(the bacterial taxon which causes Lyme disease) infection prevalence in small mammals. We compared the associations between infection prevalence and small mammal host diversity for local communities (individual plots) and metacommunities (multiple plots aggregated within a landscape) sampled by the National Ecological Observatory Network (NEON), an emerging continental‐scale environmental monitoring program with a hierarchical sampling design. We applied a multispecies, spatially‐stratified capture–recapture model to a trapping dataset to estimate five small mammal biodiversity metrics, which we used to predict infection status for a subset of trapped individuals. We found that relationships betweenBorreliainfection prevalence and biodiversity did indeed vary when biodiversity was quantified at different spatial scales but that these scaling behaviors were idiosyncratic among the five biodiversity metrics. For example, species richness of local communities showed a negative (dilution) effect on infection prevalence, while species richness of the small mammal metacommunity showed a positive (amplification) effect on infection prevalence. Our modeling approach can inform future analyses as data from similar monitoring programs accumulate and become increasingly available through time. Our results indicate that a focus on single spatial scales when assessing the influence of biodiversity on disease risk provides an incomplete picture of the complexity of disease dynamics in ecosystems. 
    more » « less
  2. Understanding the role of biotic interactions in shaping natural communities is a long-standing challenge in ecology. It is particularly pertinent to parasite communities sharing the same host communities and individuals, as the interactions among parasites—both competition and facilitation—may have far-reaching implications for parasite transmission and evolution. Aggregated parasite burdens may suggest that infected host individuals are either more prone to infection, or that infection by a parasite species facilitates another, leading to a positive parasite–parasite interaction. However, parasite species may also compete for host resources, leading to the prediction that parasite–parasite associations would be generally negative, especially when parasite species infect the same host tissue, competing for both resources and space. We examine the presence and strength of parasite associations using hierarchical joint species distribution models fitted to data on resident parasite communities sampled on over 1300 small mammal individuals across 22 species and their resident parasite communities. On average, we detected more positive associations between infecting parasite species than negative, with the most negative associations occurring when two parasite species infected the same host tissue, suggesting that parasite species associations may be quantifiable from observational data. Overall, our findings suggest that parasite community prediction at the level of the individual host is possible, and that parasite species associations may be detectable in complex multi-species communities, generating many hypotheses concerning the effect of host community changes on parasite community composition, parasite competition within infected hosts, and the drivers of parasite community assembly and structure. 
    more » « less
  3. Abstract Hundreds of studies now document positive relationships between biodiversity and critical ecosystem processes, but as ecological communities worldwide shift toward new species configurations, less is known regarding how the biodiversity of undesirable species will shape the functioning of ecosystems or foundation species. We manipulated macroalgal species richness in experimental field plots to test whether and how the identity and diversity of competing macroalgae affected the growth, survival, and microbiome of a common coral in Mo'orea, French Polynesia. Compared to controls without algal competitors, coral growth was significantly suppressed across three macroalgal monocultures, a polyculture of the same three macroalgae, and plots containing inert seaweed mimics; coral mortality was limited and did not differ significantly among treatments. One macroalga suppressed coral growth significantly less than the other two, but none differed from the inert mimic in terms of coral suppression. The composition, dispersion, and diversity of coral microbiomes in treatments with live macroalgae or inert plastic mimics did not differ from controls experiencing no competition. Microbiome composition differed between two macroalgal monocultures and a monoculture versus plastic mimics, but no other microbiome differences were observed among macroalgal or mimic treatments. Together, these findings suggest that algal diversity does not alter harmful impacts of macroalgae on coral performance, which could be accounted for by physical structure alone in these field experiments. While enhancing biodiversity is a recognized strategy for promoting desirable species, it would be worrisome if biodiversity also enhanced the negative impacts of undesirable species. We documented no such effects in this investigation. 
    more » « less
  4. The complex relationship between ecosystem function and soil food web structure is governed by species interactions, many of which remain unmapped. Phagotrophic protists structure soil food webs by grazing the microbiome, yet their involvement in intraguild competition, susceptibility to predator diversity, and grazing preferences are only vaguely known. These species-dependent interactions are contextualized by adjacent biotic and abiotic processes, and thus obfuscated by typically high soil biodiversity. Such questions may be investigated in the McMurdo Dry Valleys (MDV) of Antarctica because the physical environment strongly filters biodiversity and simplifies the influence of abiotic factors. To detect the potential interactions in the MDV, we analyzed the co-occurrence among shotgun metagenome sequences for associations suggestive of intraguild competition, predation, and preferential grazing. In order to control for confounding abiotic drivers, we tested co-occurrence patterns against various climatic and edaphic factors. Non-random co-occurrence between phagotrophic protists and other soil fauna was biotically driven, but we found no support for competition or predation. However, protists predominately associated with Proteobacteria and avoided Actinobacteria, suggesting grazing preferences were modulated by bacterial cell-wall structure and growth rate. Our study provides a critical starting-point for mapping protist interactions in native soils and highlights key trends for future targeted molecular and culture-based approaches. 
    more » « less
  5. Tracking biodiversity across biomes over space and time has emerged as an imperative in unified global efforts to manage our living planet for a sustainable future for humanity. We harness the National Ecological Observatory Network to develop routines using airborne spectroscopic imagery to predict multiple dimensions of plant biodiversity at continental scale across biomes in the US. Our findings show strong and positive associations between diversity metrics based on spectral species and ground-based plant species richness and other dimensions of plant diversity, whereas metrics based on distance matrices did not. We found that spectral diversity consistently predicts analogous metrics of plant taxonomic, functional, and phylogenetic dimensions of biodiversity across biomes. The approach demonstrates promise for monitoring dimensions of biodiversity globally by integrating ground-based measures of biodiversity with imaging spectroscopy and advances capacity toward a Global Biodiversity Observing System. 
    more » « less