skip to main content

Title: Same Coverage, Less Bloat: Accelerating Binary-only Fuzzing with Coverage-preserving Coverage-guided Tracing
Coverage-guided fuzzing's aggressive, high-volume testing has helped reveal tens of thousands of software security flaws. While executing billions of test cases mandates fast code coverage tracing, the nature of binary-only targets leads to reduced tracing performance. A recent advancement in binary fuzzing performance is Coverage-guided Tracing (CGT), which brings orders-of-magnitude gains in throughput by restricting the expense of coverage tracing to only when new coverage is guaranteed. Unfortunately, CGT suits only a basic block coverage granularity---yet most fuzzers require finer-grain coverage metrics: edge coverage and hit counts. It is this limitation which prohibits nearly all of today's state-of-the-art fuzzers from attaining the performance benefits of CGT.This paper tackles the challenges of adapting CGT to fuzzing's most ubiquitous coverage metrics. We introduce and implement a suite of enhancements that expand CGT's introspection to fuzzing's most common code coverage metrics, while maintaining its orders-of-magnitude speedup over conventional always-on coverage tracing. We evaluate their trade-offs with respect to fuzzing performance and effectiveness across 12 diverse real-world binaries (8 open- and 4 closed-source). On average, our coverage-preserving CGT attains near-identical speed to the present block-coverage-only CGT, UnTracer; and outperforms leading binary- and source-level coverage tracers QEMU, Dyninst, RetroWrite, and AFL-Clang by 2--24x, finding more more » bugs in less time. « less
Authors:
; ; ; ;
Award ID(s):
2115130
Publication Date:
NSF-PAR ID:
10350088
Journal Name:
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security
Page Range or eLocation-ID:
351 to 365
Sponsoring Org:
National Science Foundation
More Like this
  1. Coverage-guided fuzzing is one of the most effective software security testing techniques. Fuzzing takes on one of two forms: compiler-based or binary-only, depending on the availability of source code. While the fuzzing community has improved compiler-based fuzzing with performance- and feedback-enhancing program transformations, binary-only fuzzing lags behind due to the semantic and performance limitations of instrumenting code at the binary level. Many fuzzing use cases are binary-only (i.e., closed source). Thus, applying fuzzing-enhancing program transformations to binary-only fuzzing—without sacrificing performance—remains a compelling challenge. This paper examines the properties required to achieve compiler-quality binary-only fuzzing instrumentation. Based on our findings, we design ZAFL: a platform for applying fuzzing-enhancing program transformations to binary-only targets—maintaining compiler-level performance. We showcase ZAFL's capabilities in an implementation for the popular fuzzer AFL, including five compiler-style fuzzing-enhancing transformations, and evaluate it against the leading binary-only fuzzing instrumenters AFL-QEMU and AFL-Dyninst. Across LAVA-M and real-world targets, ZAFL improves crash-finding by 26–96% and 37–131%; and throughput by 48– 78% and 159–203% compared to AFL-Dyninst and AFL-QEMU, respectively—while maintaining compiler-level of overhead of 27%. We also show that ZAFL supports real-world open- and closed-source software of varying size (10K– 100MB), complexity (100–1M basic blocks), platform (Linux and Windows), and formatmore »(e.g., stripped and PIC).« less
  2. Coverage-guided fuzzing has become mainstream in fuzzing to automatically expose program vulnerabilities. Recently, a group of fuzzers are proposed to adopt a random search mechanism namely Havoc, explicitly or implicitly, to augment their edge exploration. However, they only tend to adopt the default setup of Havoc as an implementation option while none of them attempts to explore its power under diverse setups or inspect its rationale for potential improvement. In this paper, to address such issues, we conduct the first empirical study on Havoc to enhance the understanding of its characteristics. Specifically, we first find that applying the default setup of Havoc to fuzzers can significantly improve their edge coverage performance. Interestingly, we further observe that even simply executing Havoc itself without appending it to any fuzzer can lead to strong edge coverage performance and outperform most of our studied fuzzers. Moreover, we also extend the execution time of Havoc and find that most fuzzers can not only achieve significantly higher edge coverage, but also tend to perform similarly (i.e., their performance gaps get largely bridged). Inspired by the findings, we further propose Havoc𝑀𝐴𝐵, which models the Havoc mutation strategy as a multi-armed bandit problem to be solved by dynamicallymore »adjusting the mutation strategy. The evaluation result presents that Havoc𝑀𝐴𝐵 can significantly increase the edge coverage by 11.1% on average for all the benchmark projects compared with Havoc and even slightly outperform state-of-the-art QSYM which augments its computing resource by adopting three parallel threads. We further execute Havoc𝑀𝐴𝐵 with three parallel threads and result in 9% higher average edge coverage over QSYM upon all the benchmark projects« less
  3. Universal Serial Bus (USB) is the de facto protocol supported by peripherals and mobile devices, such as USB thumb drives and smartphones. For many devices, USB Type-C ports are the primary interface for charging, file transfer, audio, video, etc. Accordingly, attackers have exploited different vulnerabilities within USB stacks, compromising host machines via BadUSB attacks or jailbreaking iPhones from USB connections. While there exist fuzzing frameworks dedicated to USB vulnerability discovery, all of them focus on USB host stacks and ignore USB gadget stacks, which enable all the features within modern peripherals and smart devices. In this paper, we propose FUZZUSB, the first fuzzing framework for the USB gadget stack within commodity OS kernels, leveraging static analysis, symbolic execution, and stateful fuzzing. FUZZUSB combines static analysis and symbolic execution to extract internal state machines from USB gadget drivers, and uses them to achieve state-guided fuzzing through multi-channel in- puts. We have implemented FUZZUSB upon the syzkaller kernel fuzzer and applied it to the most recent mainline Linux, Android, and FreeBSD kernels. As a result, we have found 34 previously unknown bugs within the Linux and Android kernels, and opened 7 CVEs. Furthermore, compared to the baseline, FUZZUSB has also demonstrated differentmore »improvements, including 3× higher code coverage, 50× improved bug-finding efficiency for Linux USB gadget stacks, 2× higher code coverage for FreeBSD USB gadget stacks, and reproducing known bugs that could not be detected by the baseline fuzzers. We believe FUZZUSB provides developers a powerful tool to thwart USB-related vulnerabilities within modern devices and complete the current USB fuzzing scope.« less
  4. As big data analytics become increasingly popular, data-intensive scalable computing (DISC) systems help address the scalability issue of handling large data. However, automated testing for such data-centric applications is challenging, because data is often incomplete, continuously evolving, and hard to know a priori. Fuzz testing has been proven to be highly effective in other domains such as security; however, it is nontrivial to apply such traditional fuzzing to big data analytics directly for three reasons: (1) the long latency of DISC systems prohibits the applicability of fuzzing: naïve fuzzing would spend 98% of the time in setting up a test environment; (2) conventional branch coverage is unlikely to scale to DISC applications because most binary code comes from the framework implementation such as Apache Spark; and (3) random bit or byte level mutations can hardly generate meaningful data, which fails to reveal real-world application bugs. We propose a novel coverage-guided fuzz testing tool for big data analytics, called BigFuzz. The key essence of our approach is that: (a) we focus on exercising application logic as opposed to increasing framework code coverage by abstracting the DISC framework using specifications. BigFuzz performs automated source to source transformations to construct an equivalent DISCmore »application suitable for fast test generation, and (b) we design schema-aware data mutation operators based on our in-depth study of DISC application error types. BigFuzz speeds up the fuzzing time by 78 to 1477X compared to random fuzzing, improves application code coverage by 20% to 271%, and achieves 33% to 157% improvement in detecting application errors. When compared to the state of the art that uses symbolic execution to test big data analytics, BigFuzz is applicable to twice more programs and can find 81% more bugs.« less
  5. In the past decade, Deep Learning (DL) systems have been widely deployed in various application domains to facilitate our daily life, e.g., natural language processing, healthcare, activity recognition, and autonomous driving. Meanwhile, it is extremely challenging to ensure the correctness of DL systems (e.g., due to their intrinsic nondeterminism), and bugs in DL systems can cause serious consequences and may even threaten human lives. In the literature, researchers have explored various techniques to test, analyze, and verify DL models, since their quality directly affects the corresponding system behaviors. Recently, researchers have also proposed novel techniques for testing the underlying operator-level DL libraries (such as TensorFlow and PyTorch), which provide general binary implementations for each high-level DL operator and are the foundation for running DL models on different hardware platforms. However, there is still limited work targeting the reliability of the emerging tensor compilers (also known as DL compilers), which aim to automatically compile high-level tensor computation graphs directly into high-performance binaries for better efficiency, portability, and scalability than traditional operator-level libraries. Therefore, in this paper, we target the important problem of tensor compiler testing, and have proposed Tzer, a practical fuzzing technique for the widely used TVM tensor compiler. Tzermore »focuses on mutating the low-level Intermediate Representation (IR) for TVM due to the limited mutation space for the high-level IR. More specifically, Tzer leverages both general-purpose and tensor-compiler-specific mutators guided by coverage feedback for diverse and evolutionary IR mutation; furthermore, since tensor compilers provide various passes (i.e., transformations) for IR optimization, Tzer also performs pass mutation in tandem with IR mutation for more effective fuzzing. Our experimental results show that Tzer substantially outperforms existing fuzzing techniques on tensor compiler testing, with 75% higher coverage and 50% more valuable tests than the 2nd-best technique. Also, different components of Tzer have been validated via ablation study. To date, Tzer has detected 49 previously unknown bugs for TVM, with 37 bugs confirmed and 25 bugs fixed (PR merged).« less