skip to main content

This content will become publicly available on October 1, 2023

Title: Hierarchical Training for Distributed Deep Learning Based on Multimedia Data over Band-limited Networks
Distributed deep learning (DL) plays a critical role in many wireless Internet of Things (IoT) applications including re- mote camera deployment. This work addresses three practical challenges in cyber-deployment of distributed DL over band- limited channels. Specifically, many IoT systems consist of sensor nodes for raw data collection and encoding, and servers for learning and inference tasks. Adaptation of DL over band-limited network data links has only been scantly addressed. A second challenge is the need for pre-deployed encoders being compatible with flexible decoders that can be upgraded or retrained. The third challenge is the robust- ness against erroneous training labels. Addressing these three challenges, we develop a hierarchical learning strategy to im- prove image classification accuracy over band-limited links between sensor nodes and servers. Experimental results show that our hierarchically-trained models can improve link spectrum efficiency without performance loss, reduce storage and computational complexity, and achieve robustness against training label corruption.
; ;
Award ID(s):
1824553 2002937
Publication Date:
Journal Name:
IEEE International Conference on Image Processing
Bordeaux, France
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep learning (DL) is a popular technique for building models from large quantities of data such as pictures, videos, messages generated from edges devices at rapid pace all over the world. It is often infeasible to migrate large quantities of data from the edges to centralized data center(s) over WANs for training due to privacy, cost, and performance reasons. At the same time, training large DL models on edge devices is infeasible due to their limited resources. An attractive alternative for DL training distributed data is to use micro-clouds---small-scale clouds deployed near edge devices in multiple locations. However, micro-clouds present the challenges of both computation and network resource heterogeneity as well as dynamism. In this paper, we introduce DLion, a new and generic decentralized distributed DL system designed to address the key challenges in micro-cloud environments, in order to reduce overall training time and improve model accuracy. We present three key techniques in DLion: (1) Weighted dynamic batching to maximize data parallelism for dealing with heterogeneous and dynamic compute capacity, (2) Per-link prioritized gradient exchange to reduce communication overhead for model updates based on available network capacity, and (3) Direct knowledge transfer to improve model accuracy by merging the bestmore »performing model parameters. We build a prototype of DLion on top of TensorFlow and show that DLion achieves up to 4.2X speedup in an Amazon GPU cluster, and up to 2X speed up and 26% higher model accuracy in a CPU cluster over four state-of-the-art distributed DL systems.« less
  2. Abstract. Advances in ambient environmental monitoring technologies are enabling concerned communities and citizens to collect data to better understand their local environment and potential exposures. These mobile, low-cost tools make it possible to collect data with increased temporal and spatial resolution, providing data on a large scale with unprecedented levels of detail. This type of data has the potential to empower people to make personal decisions about their exposure and support the development of local strategies for reducing pollution and improving health outcomes. However, calibration of these low-cost instruments has been a challenge. Often, a sensor package is calibrated via field calibration. This involves colocating the sensor package with a high-quality reference instrument for an extended period and then applying machine learning or other model fitting technique such as multiple linear regression to develop a calibration model for converting raw sensor signals to pollutant concentrations. Although this method helps to correct for the effects of ambient conditions (e.g., temperature) and cross sensitivities with nontarget pollutants, there is a growing body of evidence that calibration models can overfit to a given location or set of environmental conditions on account of the incidental correlation between pollutant levels and environmental conditions, including diurnalmore »cycles. As a result, a sensor package trained at a field site may provide less reliable data when moved, or transferred, to a different location. This is a potential concern for applications seeking to perform monitoring away from regulatory monitoring sites, such as personal mobile monitoring or high-resolution monitoring of a neighborhood. We performed experiments confirming that transferability is indeed a problem and show that it can be improved by collecting data from multiple regulatory sites and building a calibration model that leverages data from a more diverse data set. We deployed three sensor packages to each of three sites with reference monitors (nine packages total) and then rotated the sensor packages through the sites over time. Two sites were in San Diego, CA, with a third outside of Bakersfield, CA, offering varying environmental conditions, general air quality composition, and pollutant concentrations. When compared to prior single-site calibration, the multisite approach exhibits better model transferability for a range of modeling approaches. Our experiments also reveal that random forest is especially prone to overfitting and confirm prior results that transfer is a significant source of both bias and standard error. Linear regression, on the other hand, although it exhibits relatively high error, does not degrade much in transfer. Bias dominated in our experiments, suggesting that transferability might be easily increased by detecting and correcting for bias. Also, given that many monitoring applications involve the deployment of many sensor packages based on the same sensing technology, there is an opportunity to leverage the availability of multiple sensors at multiple sites during calibration to lower the cost of training and better tolerate transfer. We contribute a new neural network architecture model termed split-NN that splits the model into two stages, in which the first stage corrects for sensor-to-sensor variation and the second stage uses the combined data of all the sensors to build a model for a single sensor package. The split-NN modeling approach outperforms multiple linear regression, traditional two- and four-layer neural networks, and random forest models. Depending on the training configuration, compared to random forest the split-NN method reduced error 0 %–11 % for NO2 and 6 %–13 % for O3.« less
  3. Investigating the nature of system intrusions in large distributed systems remains a notoriously difficult challenge. While monitoring tools (e.g., Firewalls, IDS) provide preliminary alerts through easy-to-use administrative interfaces, attack reconstruction still requires that administrators sift through gigabytes of system audit logs stored locally on hundreds of machines. At present, two fundamental obstacles prevent synergy between system-layer auditing and modern cluster monitoring tools: 1) the sheer volume of audit data generated in a data center is prohibitively costly to transmit to a central node, and 2) system- layer auditing poses a “needle-in-a-haystack” problem, such that hundreds of employee hours may be required to diagnose a single intrusion. This paper presents Winnower, a scalable system for audit-based cluster monitoring that addresses these challenges. Our key insight is that, for tasks that are replicated across nodes in a distributed application, a model can be defined over audit logs to succinctly summarize the behavior of many nodes, thus eliminating the need to transmit redundant audit records to a central monitoring node. Specifically, Winnower parses audit records into provenance graphs that describe the actions of individual nodes, then performs grammatical inference over individual graphs using a novel adaptation of Deterministic Finite Automata (DFA) Learning tomore »produce a behavioral model of many nodes at once. This provenance model can be efficiently transmitted to a central node and used to identify anomalous events in the cluster. We have implemented Winnower for Docker Swarm container clusters and evaluate our system against real-world applications and attacks. We show that Winnower dramatically reduces storage and network overhead associated with aggregating system audit logs, by as much as 98%, without sacrificing the important information needed for attack investigation. Winnower thus represents a significant step forward for security monitoring in distributed systems.« less
  4. With the proliferation of low-cost sensors and the Internet of Things, the rate of producing data far exceeds the compute and storage capabilities of today’s infrastructure. Much of this data takes the form of time series, and in response, there has been increasing interest in the creation of time series archives in the last decade, along with the development and deployment of novel analysis methods to process the data. The general strategy has been to apply a plurality of similarity search mechanisms to various subsets and subsequences of time series data in order to identify repeated patterns and anomalies; however, the computational demands of these approaches renders them incompatible with today’s power-constrained embedded CPUs. To address this challenge, we present FA-LAMP, an FPGA-accelerated implementation of the Learned Approximate Matrix Profile (LAMP) algorithm, which predicts the correlation between streaming data sampled in real-time and a representative time series dataset used for training. FA-LAMP lends itself as a real-time solution for time series analysis problems such as classification. We present the implementation of FA-LAMP on both edge- and cloud-based prototypes. On the edge devices, FA-LAMP integrates accelerated computation as close as possible to IoT sensors, thereby eliminating the need to transmit andmore »store data in the cloud for posterior analysis. On the cloud-based accelerators, FA-LAMP can execute multiple LAMP models on the same board, allowing simultaneous processing of incoming data from multiple data sources across a network. LAMP employs a Convolutional Neural Network (CNN) for prediction. This work investigates the challenges and limitations of deploying CNNs on FPGAs using the Xilinx Deep Learning Processor Unit (DPU) and the Vitis AI development environment. We expose several technical limitations of the DPU, while providing a mechanism to overcome them by attaching custom IP block accelerators to the architecture. We evaluate FA-LAMP using a low-cost Xilinx Ultra96-V2 FPGA as well as a cloud-based Xilinx Alveo U280 accelerator card and measure their performance against a prototypical LAMP deployment running on a Raspberry Pi 3, an Edge TPU, a GPU, a desktop CPU, and a server-class CPU. In the edge scenario, the Ultra96-V2 FPGA improved performance and energy consumption compared to the Raspberry Pi; in the cloud scenario, the server CPU and GPU outperformed the Alveo U280 accelerator card, while the desktop CPU achieved comparable performance; however, the Alveo card offered an order of magnitude lower energy consumption compared to the other four platforms. Our implementation is publicly available at« less
  5. This work introduces Wearable deep learning (WearableDL) that is a unifying conceptual architecture inspired by the human nervous system, offering the convergence of deep learning (DL), Internet-of-things (IoT), and wearable technologies (WT) as follows: (1) the brain, the core of the central nervous system, represents deep learning for cloud computing and big data processing. (2) The spinal cord (a part of CNS connected to the brain) represents Internet-of-things for fog computing and big data flow/transfer. (3) Peripheral sensory and motor nerves (components of the peripheral nervous system (PNS)) represent wearable technologies as edge devices for big data collection. In recent times, wearable IoT devices have enabled the streaming of big data from smart wearables (e.g., smartphones, smartwatches, smart clothings, and personalized gadgets) to the cloud servers. Now, the ultimate challenges are (1) how to analyze the collected wearable big data without any background information and also without any labels representing the underlying activity; and (2) how to recognize the spatial/temporal patterns in this unstructured big data for helping end-users in decision making process, e.g., medical diagnosis, rehabilitation efficiency, and/or sports performance. Deep learning (DL) has recently gained popularity due to its ability to (1) scale to the big data sizemore »(scalability); (2) learn the feature engineering by itself (no manual feature extraction or hand-crafted features) in an end-to-end fashion; and (3) offer accuracy or precision in learning raw unlabeled/labeled (unsupervised/supervised) data. In order to understand the current state-of-the-art, we systematically reviewed over 100 similar and recently published scientific works on the development of DL approaches for wearable and person-centered technologies. The review supports and strengthens the proposed bioinspired architecture of WearableDL. This article eventually develops an outlook and provides insightful suggestions for WearableDL and its application in the field of big data analytics.« less