skip to main content


Title: Towards Automation for MLOps: An Exploratory Study of Bot Usage in Deep Learning Libraries
Machine learning (ML) operations or MLOps advocates for integration of DevOps- related practices into the ML development and deployment process. Adoption of MLOps can be hampered due to a lack of knowledge related to how development tasks can be automated. A characterization of bot usage in ML projects can help practitioners on the types of tasks that can be automated with bots, and apply that knowledge into their ML development and deployment process. To that end, we conduct a preliminary empirical study with 135 issues reported mined from 3 libraries related to deep learning: Keras, PyTorch, and Tensorflow. From our empirical study we observe 9 categories of tasks that are automated with bots. We conclude our work-in-progress paper by providing a list of lessons that we learned from our empirical study.  more » « less
Award ID(s):
2026869
NSF-PAR ID:
10350204
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), 2022
Page Range / eLocation ID:
1093 to 1097
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Why the new findings matter

    The process of teaching and learning is complex, multifaceted and dynamic. This paper contributes a seminal resource to highlight the digitisation of the educational sciences by demonstrating how new machine learning methods can be effectively and reliably used in research, education and practical application.

    Implications for educational researchers and policy makers

    The progressing digitisation of societies around the globe and the impact of the SARS‐COV‐2 pandemic have highlighted the vulnerabilities and shortcomings of educational systems. These developments have shown the necessity to provide effective educational processes that can support sometimes overwhelmed teachers to digitally impart knowledge on the plan of many governments and policy makers. Educational scientists, corporate partners and stakeholders can make use of machine learning techniques to develop advanced, scalable educational processes that account for individual needs of learners and that can complement and support existing learning infrastructure. The proper use of machine learning methods can contribute essential applications to the educational sciences, such as (semi‐)automated assessments, algorithmic‐grading, personalised feedback and adaptive learning approaches. However, these promises are strongly tied to an at least basic understanding of the concepts of machine learning and a degree of data literacy, which has to become the standard in education and the educational sciences.

    Demonstrating both the promises and the challenges that are inherent to the collection and the analysis of large educational data with machine learning, this paper covers the essential topics that their application requires and provides easy‐to‐follow resources and code to facilitate the process of adoption.

     
    more » « less
  2. In this paper, we interrogate whether data quality issues track demographic characteristics such as sex, race and age, and whether automated data cleaning — of the kind commonly used in production ML systems — impacts the fairness of predictions made by these systems. To the best of our knowledge, the impact of data cleaning on fairness in downstream tasks has not been investigated in the literature.We first analyze the tuples flagged by common error detection strategies in five research datasets. We find that, while specific data quality issues, such as higher rates of missing values, are associated with membership in historically disadvantaged groups, poor data quality does not generally track demographic group membership. As a follow-up, we conduct a large-scale empirical study on the impact of automated data cleaning on fairness, involving more than 26,000 model evaluations on five datasets. We observe that, while automated data cleaning has an insignificant impact on both accuracy and fairness in the majority of cases, it is more likely to worsen fairness than to improve it, especially when the cleaning techniques are not carefully chosen. This finding is both significant and worrying, given that it potentially implicates many production ML systems. We make our code and experimental results publicly available.The analysis we conducted in this paper is difficult, primarily because it requires that we think holistically about disparities in data quality, disparities in the effectiveness of data cleaning methods, and impacts of such disparities on ML model performance for different demographic groups. Such holistic analysis can and should be supported with the help of data engineering research. Towards this goal, we envision the development of fairness-aware data cleaning methods, and their integration into complex pipelines for ML-based decision making. 
    more » « less
  3. null (Ed.)
    In the aftermath of earthquake events, reconnaissance teams are deployed to gather vast amounts of images, moving quickly to capture perishable data to document the performance of infrastructure before they are destroyed. Learning from such data enables engineers to gain new knowledge about the real-world performance of structures. This new knowledge, extracted from such visual data, is critical to mitigate the risks (e.g., damage and loss of life) associated with our built environment in future events. Currently, this learning process is entirely manual, requiring considerable time and expense. Thus, unfortunately, only a tiny portion of these images are shared, curated, and actually utilized. The power of computers and artificial intelligence enables a new approach to organize and catalog such visual data with minimal manual effort. Here we discuss the development and deployment of an organizational system to automate the analysis of large volumes of post-disaster visual data, images. Our application, named the Automated Reconnaissance Image Organizer (ARIO), allows a field engineer to rapidly and automatically categorize their reconnaissance images. ARIO exploits deep convolutional neural networks and trained classifiers, and yields a structured report combined with useful metadata. Classifiers are trained using our ground-truth visual database that includes over 140,000 images from past earthquake reconnaissance missions to study post-disaster buildings in the field. Here we discuss the novel deployment of the ARIO application within a cloud-based system that we named VISER (Visual Structural Expertise Replicator), a comprehensive cloud-based visual data analytics system with a novel Netflix-inspired technical search capability. Field engineers can exploit this research and our application to search an image repository for visual content. We anticipate that these tools will empower engineers to more rapidly learn new lessons from earthquakes using reconnaissance data. 
    more » « less
  4. We present the OPEN GRAPH BENCHMARK (OGB), a diverse set of challenging and realistic benchmark datasets to facilitate scalable, robust, and reproducible graph machine learning (ML) research. OGB datasets are large-scale, encompass multiple important graph ML tasks, and cover a diverse range of domains, ranging from social and information networks to biological networks, molecular graphs, source code ASTs, and knowledge graphs. For each dataset, we provide a unified evaluation protocol using meaningful application-specific data splits and evaluation metrics. In addition to building the datasets, we also perform extensive benchmark experiments for each dataset. Our experiments suggest that OGB datasets present significant challenges of scalability to large-scale graphs and out-of-distribution generalization under realistic data splits, indicating fruitful opportunities for future research. Finally, OGB provides an automated end-to-end graph ML pipeline that simplifies and standardizes the process of graph data loading, experimental setup, and model evaluation. OGB will be regularly updated and welcomes inputs from the community. OGB datasets as well as data loaders, evaluation scripts, baseline code, and leaderboards are publicly available at https://ogb.stanford.edu. 
    more » « less
  5. This paper presents a domain-guided approach for learning representations of scalp-electroencephalograms (EEGs) without relying on expert annotations. Expert labeling of EEGs has proven to be an unscalable process with low inter-reviewer agreement because of the complex and lengthy nature of EEG recordings. Hence, there is a need for machine learning (ML) approaches that can leverage expert domain knowledge without incurring the cost of labor-intensive annotations. Self-supervised learning (SSL) has shown promise in such settings, although existing SSL efforts on EEG data do not fully exploit EEG domain knowledge. Furthermore, it is unclear to what extent SSL models generalize to unseen tasks and datasets. Here we explore whether SSL tasks derived in a domain-guided fashion can learn generalizable EEG representations. Our contributions are three-fold: 1) we propose novel SSL tasks for EEG based on the spatial similarity of brain activity, underlying behavioral states, and age-related differences; 2) we present evidence that an encoder pretrained using the proposed SSL tasks shows strong predictive performance on multiple downstream classifications; and 3) using two large EEG datasets, we show that our encoder generalizes well to multiple EEG datasets during downstream evaluations. 
    more » « less