skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Short Time Large Deviations of the KPZ Equation
We establish the Freidlin–Wentzell Large Deviation Principle (LDP) for the Stochastic Heat Equation with multiplicative noise in one spatial dimension. That is, we introduce a small parameter ε√ to the noise, and establish an LDP for the trajectory of the solution. Such a Freidlin–Wentzell LDP gives the short-time, one-point LDP for the KPZ equation in terms of a variational problem. Analyzing this variational problem under the narrow wedge initial data, we prove a quadratic law for the near-center tail and a 52 law for the deep lower tail. These power laws confirm existing physics predictions (Kolokolov and Korshunov in Phys Rev B 75(14):140201, 2007, Phys Rev E 80(3):031107, 2009; Meerson et al. in Phys Rev Lett 116(7):070601, 2016; Le Doussal et al. in Phys Rev Lett 117(7):070403, 2016; Kamenev et al. in Phys Rev E 94(3):032108, 2016).  more » « less
Award ID(s):
1953407
PAR ID:
10350341
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Communications in mathematical physics
Volume:
386
Issue:
1
ISSN:
1432-0916
Page Range / eLocation ID:
pages359–393
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the variational problem associated with the Freidlin–Wentzell Large Deviation Principle (LDP) for the Stochastic Heat Equation (SHE). For a general class of initial-terminal conditions, we show that a minimizer of this variational problem exists, and any minimizer solves a system of imaginary-time Nonlinear Schrödinger equations. This system is integrable. Utilizing the integrability, we prove that the formulas from the physics work (see Alexandre Krajenbrink and Pierre Le Doussal [Phys. Rev. Lett. 127 (2021), p. 8]) hold for every minimizer of the variational problem. As an application, we consider the Freidlin–Wentzell LDP for the SHE with the delta initial condition. Under a technical assumption on the poles of the reflection coefficients, we prove the explicit expression for the one-point rate function that was predicted in the physics works (see Pierre Le Doussal, Satya N. Majumdar, Alberto Rosso, and Grégory Schehr [Phys. Rev. Lett. 117 (2016), p. 070403]; Alexandre Krajenbrink and Pierre Le Doussal [Phys. Rev. Lett. 127 (2021), p. 8]). Under the same assumption, we give detailed pointwise estimates of the most probable shape in the upper-tail limit. 
    more » « less
  2. Abstract In the seminal work (Weinstein 1999Nonlinearity12673), Weinstein considered the question of the ground states for discrete Schrödinger equations with power law nonlinearities, posed on Z d . More specifically, he constructed the so-called normalised waves, by minimising the Hamiltonian functional, for fixed powerP(i.e.l2mass). This type of variational method allows one to claim, in a straightforward manner, set stability for such waves. In this work, we revisit these questions and build upon Weinstein’s work, as well as the innovative variational methods introduced for this problem in (Laedkeet al1994Phys. Rev. Lett.731055 and Laedkeet al1996Phys. Rev.E544299) in several directions. First, for the normalised waves, we show that they are in fact spectrally stable as solutions of the corresponding discrete nonlinear Schroedinger equation (NLS) evolution equation. Next, we construct the so-called homogeneous waves, by using a different constrained optimisation problem. Importantly, this construction works for all values of the parameters, e.g.l2supercritical problems. We establish a rigorous criterion for stability, which decides the stability on the homogeneous waves, based on the classical Grillakis–Shatah–Strauss/Vakhitov–Kolokolov (GSS/VK) quantity ω φ ω l 2 2 . In addition, we provide some symmetry results for the solitons. Finally, we complement our results with numerical computations, which showcase the full agreement between the conclusion from the GSS/VK criterion vis-á-vis with the linearised problem. In particular, one observes that it is possible for the stability of the wave to change as the spectral parameterωvaries, in contrast with the corresponding continuous NLS model. 
    more » « less
  3. Abstract The concept of a primitive potential for the Schrödinger operator on the line was introduced in Dyachenko et al. (2016, Phys. D, 333, 148–156), Zakharov, Dyachenko et al. (2016, Lett. Math. Phys., 106, 731–740) and Zakharov, Zakharov et al. (2016, Phys. Lett. A, 380, 3881–3885). Such a potential is determined by a pair of positive functions on a finite interval, called the dressing functions, which are not uniquely determined by the potential. The potential is constructed by solving a contour problem on the complex plane. In this article, we consider a reduction where the dressing functions are equal. We show that in this case, the resulting potential is symmetric, and describe how to analytically compute the potential as a power series. In addition, we establish that if the dressing functions are both equal to one, then the resulting primitive potential is the elliptic one-gap potential. 
    more » « less
  4. We consider the variational problem associated with the Freidlin--Wentzell Large Deviation Principle of the Stochastic Heat Equation (SHE). The logarithm of the minimizer of the variational problem gives the most probable shape of the solution of the Kardar--Parisi--Zhang equation conditioned on achieving certain unlikely values. Taking the SHE with the delta initial condition and conditioning the value of its solution at the origin at a later time, under suitable scaling, we prove that the logarithm of the minimizer converges to an explicit function as we tune the value of the conditioning to 0. Our result confirms the physics prediction Kolokolov and Korshunov (2009), Meerson, Katzav, and Vilenkin (2016), Kamenev, Meerson, and Sasorov (2016). 
    more » « less
  5. Abstract Laser cooling is used to produce ultracold atoms and molecules for quantum science and precision measurement applications. Molecules are more challenging to cool than atoms due to their vibrational and rotational internal degrees of freedom. Molecular rotations lead to the use of type-II transitions ( F F ) for magneto-optical trapping (MOT). When typical red detuned light frequencies are applied to these transitions, sub-Doppler heating is induced, resulting in higher temperatures and larger molecular cloud sizes than realized with the type-I MOTs most often used with atoms. To improve type-II MOTs, Jarviset al(2018Phys. Rev. Lett.120083201) proposed a blue-detuned MOT to be applied after initial cooling and capture with a red-detuned MOT. This was successfully implemented (Burauet al2023Phys. Rev. Lett.130193401; Jorapuret al2024Phys. Rev. Lett.132163403; Liet al2024Phys. Rev. Lett.132233402), realizing colder and denser molecular samples. Very recently, Hallaset al(2024 arXiv:2404.03636) demonstrated a blue-detuned MOT with a ‘1+2’ configuration that resulted in even stronger compression of the molecular cloud. Here, we describe and characterize theoretically the conveyor-belt mechanism that underlies this observed enhanced compression. We perform numerical simulations of the conveyor-belt mechanism using both stochastic Schrödinger equation and optical Bloch equation approaches. We investigate the conveyor-belt MOT characteristics in relation to laser parameters,g-factors and the structure of the molecule, and find that conveyor-belt trapping should be applicable to a wide range of laser-coolable molecules. 
    more » « less