skip to main content

This content will become publicly available on January 1, 2023

Title: The Eccentric Nature of Eccentric Tidal Disruption Events
Abstract Upon entering the tidal sphere of a supermassive black hole, a star is ripped apart by tides and transformed into a stream of debris. The ultimate fate of that debris, and the properties of the bright flare that is produced and observed, depends on a number of parameters, including the energy of the center of mass of the original star. Here we present the results of a set of smoothed particle hydrodynamics simulations in which a 1 M ⊙ , γ = 5/3 polytrope is disrupted by a 10 6 M ⊙ supermassive black hole. Each simulation has a pericenter distance of r p = r t (i.e., β ≡ r t / r p = 1 with r t the tidal radius), and we vary the eccentricity e of the stellar orbit from e = 0.8 up to e = 1.20 and study the nature of the fallback of debris onto the black hole and the long-term fate of the unbound material. For simulations with eccentricities e ≲ 0.98, the fallback curve has a distinct, three-peak structure that is induced by self-gravity. For simulations with eccentricities e ≳ 1.06, the core of the disrupted star reforms following its more » initial disruption. Our results have implications for, e.g., tidal disruption events produced by supermassive black hole binaries. « less
Authors:
; ;
Award ID(s):
2006684
Publication Date:
NSF-PAR ID:
10350416
Journal Name:
The Astrophysical Journal
Volume:
924
Issue:
1
Page Range or eLocation-ID:
34
ISSN:
0004-637X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The distribution of orbital energies imparted into stellar debris following the close encounter of a star with a supermassive black hole is the principal factor in determining the rate of return of debris to the black hole, and thus in determining the properties of the resulting lightcurves from such events. We present simulations of tidal disruption events for a range of β ≡ r t / r p where r p is the pericenter distance and r t the tidal radius. We perform these simulations at different spatial resolutions to determine the numerical convergence of our models. We compare simulations in which the heating due to shocks is included or excluded from the dynamics. For β ≲ 8, the simulation results are well-converged at sufficiently moderate-to-high spatial resolution, while for β ≳ 8, the breadth of the energy distribution can be grossly exaggerated by insufficient spatial resolution. We find that shock heating plays a non-negligible role only for β ≳ 4, and that typically the effect of shock heating is mild. We show that self-gravity can modify the energy distribution over time after the debris has receded to large distances for all β . Primarily, our results show thatmore »across a range of impact parameters, while the shape of the energy distribution varies with β , the width of the energy spread imparted to the bulk of the debris is closely matched to the canonical spread, Δ E = GM • R ⋆ / r t 2 , for the range of β we have simulated.« less
  2. Abstract

    We develop a Newtonian model of a deep tidal disruption event (TDE), for which the pericenter distance of the star,rp, is well within the tidal radius of the black hole,rt, i.e., whenβrt/rp≫ 1. We find that shocks form forβ≳ 3, but they are weak (with Mach numbers ∼1) for allβ, and that they reach the center of the star prior to the time of maximum adiabatic compression forβ≳ 10. The maximum density and temperature reached during the TDE follow much shallower relations withβthan the previously predictedρmaxβ3andTmaxβ2scalings. Belowβ≃ 10, this shallower dependence occurs because the pressure gradient is dynamically significant before the pressure is comparable to the ram pressure of the free-falling gas, while aboveβ≃ 10, we find that shocks prematurely halt the compression and yield the scalingsρmaxβ1.62andTmaxβ1.12. We find excellent agreement between our results and high-resolution simulations. Our results demonstrate that, in the Newtonian limit, the compression experienced by the star is completely independent of the mass of the black hole. We discuss our results in the context of existing (affine) models, polytropic versus non-polytropic stars, and general relativistic effects, which become important when the pericenter ofmore »the star nears the direct capture radius, atβ∼ 12.5 (2.7) for a solar-like star disrupted by a 106M(107M) supermassive black hole.

    « less
  3. Abstract

    We present a toy model for the thermal optical/UV/X-ray emission from tidal disruption events (TDEs). Motivated by recent hydrodynamical simulations, we assume that the debris streams promptly and rapidly circularize (on the orbital period of the most tightly bound debris), generating a hot quasi-spherical pressure-supported envelope of radiusRv∼ 1014cm (photosphere radius ∼1015cm) surrounding the supermassive black hole (SMBH). As the envelope cools radiatively, it undergoes Kelvin–Helmholtz contractionRvt−1, its temperature risingTefft1/2while its total luminosity remains roughly constant; the optical luminosity decays asνLνRv2Tefft3/2. Despite this similarity to the mass fallback rateṀfbt5/3, envelope heating from fallback accretion is subdominant compared to the envelope cooling luminosity except near optical peak (where they are comparable). Envelope contraction can be delayed by energy injection from accretion from the inner envelope onto the SMBH in a regulated manner, leading to a late-time flattening of the optical/X-ray light curves, similar to those observed in some TDEs. Eventually, as the envelope contracts to near the circularization radius, the SMBH accretion rate rises to its maximum, in tandem with the decreasing optical luminosity. This cooling-induced (rather than circularization-induced) delay of up to several hundred days may account for themore »delayed onset of thermal X-rays, late-time radio flares, and high-energy neutrino generation, observed in some TDEs. We compare the model predictions to recent TDE light-curve correlation studies, finding both agreement and points of tension.

    « less
  4. ABSTRACT

    A star destroyed by a supermassive black hole (SMBH) in a tidal disruption event (TDE) enables the study of SMBHs. We propose that the distance within which a star is completely destroyed by an SMBH, defined rt,c, is accurately estimated by equating the SMBH tidal field (including numerical factors) to the maximum gravitational field in the star. We demonstrate that this definition accurately reproduces the critical βc = rt/rt,c, where rt = R⋆(M•/M⋆)1/3 is the standard tidal radius with R⋆ and M⋆ the stellar radius and mass, and M• the SMBH mass, for multiple stellar progenitors at various ages, and can be reasonably approximated by βc ≃ [ρc/(4ρ⋆)]1/3, where ρc (ρ⋆) is the central (average) stellar density. We also calculate the peak fallback rate and time at which the fallback rate peaks, finding excellent agreement with hydrodynamical simulations, and also suggest that the partial disruption radius – the distance at which any mass is successfully liberated from the star – is βpartial ≃ 4−1/3 ≃ 0.6. For given stellar and SMBH populations, this model yields, e.g. the fraction of partial TDEs, the peak luminosity distribution of TDEs, and the number of directly captured stars.

  5. ABSTRACT We use the general relativistic radiation magnetohydrodynamics code KORAL to simulate the accretion disc formation resulting from the tidal disruption of a solar mass star around a supermassive black hole (BH) of mass 106 M⊙. We simulate the disruption of artificially more bound stars with orbital eccentricity e ≤ 0.99 (compared to the more realistic case of parabolic orbits with e = 1) on close orbits with impact parameter β ≥ 3. We use a novel method of injecting the tidal stream into the domain, and we begin the stream injection at the peak fallback rate in this study. For two simulations, we choose e = 0.99 and inject mass at a rate that is similar to parabolic TDEs. We find that the disc only becomes mildly circularized with eccentricity e ≈ 0.6 within the 3.5 d that we simulate. The rate of circularization is faster for pericenter radii that come closer to the BH. The emitted radiation is mildly super-Eddington with $L_{\rm {bol}}\approx 3{-}5\, L_{\rm {Edd}}$ and the photosphere is highly asymmetric with the photosphere being significantly closer to the inner accretion disc for viewing angles near pericenter. We find that soft X-ray radiation with Trad ≈ 3–5 × 105 K may be visible for chance viewing angles.more »Our simulations suggest that TDEs should be radiatively inefficient with η ≈ 0.009–0.014.« less