skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Core motifs predict dynamic attractors in combinatorial threshold-linear networks
Combinatorial threshold-linear networks (CTLNs) are a special class of inhibition-dominated TLNs defined from directed graphs. Like more general TLNs, they display a wide variety of nonlinear dynamics including multistability, limit cycles, quasiperiodic attractors, and chaos. In prior work, we have developed a detailed mathematical theory relating stable and unstable fixed points of CTLNs to graph-theoretic properties of the underlying network. Here we find that a special type of fixed points, corresponding to core motifs , are predictive of both static and dynamic attractors. Moreover, the attractors can be found by choosing initial conditions that are small perturbations of these fixed points. This motivates us to hypothesize that dynamic attractors of a network correspond to unstable fixed points supported on core motifs. We tested this hypothesis on a large family of directed graphs of size n = 5, and found remarkable agreement. Furthermore, we discovered that core motifs with similar embeddings give rise to nearly identical attractors. This allowed us to classify attractors based on structurally-defined graph families. Our results suggest that graphical properties of the connectivity can be used to predict a network’s complex repertoire of nonlinear dynamics.  more » « less
Award ID(s):
1951599 1951165
PAR ID:
10350489
Author(s) / Creator(s):
; ; ;
Editor(s):
Kryven, Ivan
Date Published:
Journal Name:
PLOS ONE
Volume:
17
Issue:
3
ISSN:
1932-6203
Page Range / eLocation ID:
e0264456
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gasparovic, E.; Robins, V.; Turner, K. (Ed.)
    Nonlinear network dynamics are notoriously difficult to understand. Here we study a class of recurrent neural networks called combinatorial threshold-linear networks (CTLNs) whose dynamics are determined by the structure of a directed graph. They are a special case of TLNs, a popular framework for modeling neural activity in computational neuroscience. In prior work, CTLNs were found to be surprisingly tractable mathematically. For small networks, the fixed points of the network dynamics can often be completely determined via a series of graph rules that can be applied directly to the underlying graph. For larger networks, it remains a challenge to understand how the global structure of the network interacts with local properties. In this work, we propose a method of covering graphs of CTLNs with a set of smaller directional graphs that reflect the local flow of activity. While directional graphs may or may not have a feedforward architecture, their fixed point structure is indicative of feedforward dynamics. The combinatorial structure of the graph cover is captured by the nerve of the cover. The nerve is a smaller, simpler graph that is more amenable to graphical analysis. We present three nerve theorems that provide strong constraints on the fixed points of the underlying network from the structure of the nerve. We then illustrate the power of these theorems with some examples. Remarkably, we find that the nerve not only constrains the fixed points of CTLNs, but also gives insight into the transient and asymptotic dynamics. This is because the flow of activity in the network tends to follow the edges of the nerve. 
    more » « less
  2. Threshold-linear networks consist of simple units interacting in the presence of a threshold nonlinearity. Competitive threshold-linear networks have long been known to exhibit multistability, where the activity of the network settles into one of potentially many steady states. In this work, we find conditions that guarantee the absence of steady states, while maintaining bounded activity. These conditions lead us to define a combinatorial family of competitive threshold-linear networks, parametrized by a simple directed graph. By exploring this family, we discover that threshold-linear networks are capable of displaying a surprisingly rich variety of nonlinear dynamics, including limit cycles, quasi-periodic attractors, and chaos. In particular, several types of nonlinear behaviors can co-exist in the same network. Our mathematical results also enable us to engineer networks with multiple dynamic patterns. Taken together, these theoretical and computational findings suggest that threshold-linear networks may be a valuable tool for understanding the relationship between network connectivity and emergent dynamics. 
    more » « less
  3. Abstract It is known that there is a one-to-one mapping between oriented directed graphs and zero-sum replicator dynamics (Lotka–Volterra equations) and that furthermore these dynamics are Hamiltonian in an appropriately defined nonlinear Poisson bracket. In this paper, we investigate the problem of determining whether these dynamics are Liouville–Arnold integrable, building on prior work in graph decloning by Evripidouet al(2022J. Phys. A: Math. Theor.55325201) and graph embedding by Paik and Griffin (2024Phys. Rev.E107L052202). Using the embedding procedure from Paik and Griffin, we show (with certain caveats) that when a graph producing integrable dynamics is embedded in another graph producing integrable dynamics, the resulting graph structure also produces integrable dynamics. We also construct a new family of graph structures that produces integrable dynamics that does not arise either from embeddings or decloning. We use these results, along with numerical methods, to classify the dynamics generated by almost all oriented directed graphs on six vertices, with three hold-out graphs that generate integrable dynamics and are not part of a natural taxonomy arising from known families and graph operations. These hold-out graphs suggest more structure is available to be found. Moreover, the work suggests that oriented directed graphs leading to integrable dynamics may be classifiable in an analogous way to the classification of finite simple groups, creating the possibility that there is a deep connection between integrable dynamics and combinatorial structures in graphs. 
    more » « less
  4. This paper provides a framework to evaluate the performance of single and double integrator networks over arbitrary directed graphs. Adopting vehicular network terminology, we consider quadratic performance metrics defined by the L2-norm of position and velocity based response functions given impulsive inputs to each vehicle. We exploit the spectral properties of weighted graph Laplacians and output performance matrices to derive a novel method of computing the closed-form solutions for this general class of performance metrics, which include H2-norm based quantities as special cases. We then explore the effect of the interplay between network properties (such as edge directionality and connectivity) and the control strategy on the overall network performance. More precisely, for systems whose interconnection is described by graphs with normal Laplacian L, we characterize the role of directionality by comparing their performance with that of their undirected counterparts, represented by the Hermitian part of L. We show that, for single-integrator networks, directed and undirected graphs perform identically. However, for double-integrator networks, graph directionality -expressed by the eigenvalues of L with nonzero imaginary part- can significantly degrade performance. Interestingly, in many cases, well-designed feedback can also exploit directionality to mitigate degradation or even improve the performance to exceed that of the undirected case. Finally we focus on a system coherence metric -aggregate deviation from the state average- to investigate the relationship between performance and degree of connectivity, leading to somewhat surprising findings. For example, increasing the number of neighbors on a ω-nearest neighbor directed graph does not necessarily improve performance. Similarly, we demonstrate equivalence in performance between all-to-one and all-to-all communication graphs. 
    more » « less
  5. Representation Learning over graph structured data has received significant attention recently due to its ubiquitous applicability. However, most advancements have been made in static graph settings while efforts for jointly learning dynamic of the graph and dynamic on the graph are still in an infant stage. Two fundamental questions arise in learning over dynamic graphs: (i) How to elegantly model dynamical processes over graphs? (ii) How to leverage such a model to effectively encode evolving graph information into low-dimensional representations? We present DyRep - a novel modeling framework for dynamic graphs that posits representation learning as a latent mediation process bridging two observed processes namely – dynamics of the network (realized as topological evolution) and dynamics on the network (realized as activities between nodes). Concretely, we propose a two-time scale deep temporal point process model that captures the interleaved dynamics of the observed processes. This model is further parameterized by a temporal-attentive representation network that encodes temporally evolving structural information into node representations which in turn drives the nonlinear evolution of the observed graph dynamics. Our unified framework is trained using an efficient unsupervised procedure and has capability to generalize over unseen nodes. We demonstrate that DyRep outperforms state-of-the-art baselines for dynamic link prediction and time prediction tasks and present extensive qualitative insights into our framework. 
    more » « less