skip to main content

This content will become publicly available on August 2, 2023

Title: MOA-2019-BLG-008Lb: A New Microlensing Detection of an Object at the Planet/Brown Dwarf Boundary
Abstract We report on the observations, analysis and interpretation of the microlensing event MOA-2019-BLG-008. The observed anomaly in the photometric light curve is best described through a binary lens model. In this model, the source did not cross caustics and no finite-source effects were observed. Therefore, the angular Einstein ring radius θ E cannot be measured from the light curve alone. However, the large event duration, t E ∼ 80 days, allows a precise measurement of the microlensing parallax π E . In addition to the constraints on the angular radius θ * and the apparent brightness I s of the source, we employ the Besançon and GalMod galactic models to estimate the physical properties of the lens. We find excellent agreement between the predictions of the two galactic models: the companion is likely a resident of the brown dwarf desert with a mass M p ∼ 30 M Jup , and the host is a main-sequence dwarf star. The lens lies along the line of sight to the Galactic bulge, at a distance of ≤4 kpc. We estimate that in about 10 yr the lens and source will be separated by ∼55 mas, and it will be possible to more » confirm the exact nature of the lensing system by using high-resolution imaging from ground- or space-based observatories. « less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
Publication Date:
Journal Name:
The Astronomical Journal
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Aims. The high-magnification microlensing event KMT-2021-BLG-1077 exhibits a subtle and complex anomaly pattern in the region around the peak. We analyze the lensing light curve of the event with the aim of revealing the nature of the anomaly. Methods. We test various models in combination with several interpretations: that the lens is a binary (2L1S), the source is a binary (1L2S), both the lens and source are binaries (2L2S), or the lens is a triple system (3L1S). We search for the best-fit models under the individual interpretations of the lens and source systems. Results. We find that the anomaly cannot be explained by the usual three-body (2L1S and 1L2S) models. The 2L2S model improves the fit compared to the three-body models, but it still leaves noticeable residuals. On the other hand, the 3L1S interpretation yields a model explaining all the major anomalous features in the lensing light curve. According to the 3L1S interpretation, the estimated mass ratios of the lens companions to the primary are ~1.56 × 10 −3 and ~1.75 × 10 −3 , which correspond to ~1.6 and ~1.8 times the Jupiter/Sun mass ratio, respectively, and therefore the lens is a multiplanetary system containing two giant planets. Withmore »the constraints of the event time-scale and angular Einstein radius, it is found that the host of the lens system is a low-mass star of mid-to-late M spectral type with amass of M h = 0.14 −0.07 +0.19 M Θ , and it hosts two gas giant planets with masses of M p1 = 0.22 −0.12 +0.31 M J and M p2 = 0.25 −0.13 +0.35 . The planets lie beyond the snow line of the host with projected separations of a ⊥,p1 = 1.26 −1.08 +1.41 AU and a ⊥,p2 = 0.93 −0.80 +1.05 AU. The planetary system resides in the Galactic bulge at a distance of D L = 8.24 −1.16 +1.02 kpc. The lens of the event is the fifth confirmed multiplanetary system detected by microlensing following OGLE-2006-BLG-109L, OGLE-2012-BLG-0026L, OGLE-2018-BLG-1011L, and OGLE-2019-BLG-0468L.« less
  2. Aims. The light curve of the microlensing event KMT-2021-BLG-1898 exhibits a short-term central anomaly with double-bump features that cannot be explained by the usual binary-lens or binary-source interpretations. With the aim of interpreting the anomaly, we analyze the lensing light curve under various sophisticated models. Methods. We find that the anomaly is explained by a model, in which both the lens and source are binaries (2L2S model). For this interpretation, the lens is a planetary system with a planet/host mass ratio of q ~ 1.5 × 10 −3 , and the source is a binary composed of a turn off or a subgiant star and a mid K dwarf. The double-bump feature of the anomaly can also be depicted by a triple-lens model (3L1S model), in which the lens is a planetary system containing two planets. Among the two interpretations, the 2L2S model is favored over the 3L1S model not only because it yields a better fit to the data, by ∆ χ 2 = [14.3−18.5], but also the Einstein radii derived independently from the two stars of the binary source result in consistent values. According to the 2L2S interpretation, KMT-2021-BLG-1898 is the third planetary lensing event occurring on amore »binary stellar system, following MOA-2010-BLG-117 and KMT-2018-BLG-1743. Results. Under the 2L2S interpretation, we identify two solutions resulting from the close-wide degeneracy in determining the planet-host separation. From a Bayesian analysis, we estimate that the planet has a mass of ~0.7−0.8 M J , and it orbits an early M dwarf host with a mass of ~0.5 M ⊙ . The projected planet-host separation is ~1.9 AU and ~3.0 AU according to the close and wide solutions, respectively.« less
  3. Aims. We investigate the microlensing event KMT-2021-BLG-0322, for which the light curve exhibits three distinctive sets of caustic-crossing features. It is found that the overall features of the light curve are approximately described by a binary-lens (2L1S) model, but the model leaves substantial residuals. We test various interpretations with the aim of explaining the residuals. Methods. We find that the residuals can be explained either by considering a nonrectilinear lens-source motion caused by the microlens-parallax and lens-orbital effects or by adding a low-mass companion to the binary lens (3L1S model). The degeneracy between the higher-order 2L1S model and the 3L1S model is very severe, making it difficult to single out a correct solution based on the photometric data. This degeneracy was known before for two previous events (MACHO-97-BLG-41 and OGLE-2013-BLG-0723), which led to the false detections of planets in binary systems, and thus the identification of the degeneracy for KMT-2021-BLG-0322 illustrates that the degeneracy can be not only common but also very severe, emphasizing the need to check both interpretations of deviations from 2L1S models. Results. From the Bayesian analysis conducted with the measured lensing observables of the event timescale, angular Einstein radius, and microlens parallax, it was estimated thatmore »the binary lens components have masses ( M 1 , M 2 ) = (0.62 −0.26 +0.25   M ⊙ , 0.07 −0.03 +0.03   M ⊙ ), for both 2L1S and 3L1S solutions, and the mass of the tertiary lens component according to the 3L1S solution is M 3  = 6.40 −2.78 +2.64   M J .« less
  4. Abstract We present Keck/NIRC2 adaptive optics imaging of planetary microlensing event MOA-2007-BLG-400 that resolves the lens star system from the source. We find that the MOA-2007-BLG-400L planetary system consists of a 1.71 ± 0.27 M Jup planet orbiting a 0.69 ± 0.04 M ⊙ K-dwarf host star at a distance of 6.89 ± 0.77 kpc from the Sun. So, this planetary system probably resides in the Galactic bulge. The planet–host star projected separation is only weakly constrained due to the close-wide light-curve degeneracy; the 2 σ projected separation ranges are 0.6–1.0 au and 4.7–7.7 au for close and wide solutions, respectively. This host mass is at the top end of the range of masses predicted by a standard Bayesian analysis. Our Keck follow-up program has now measured lens-source separations for six planetary microlensing events, and five of these six events have host star masses above the median prediction under the assumption that assumes that all stars have an equal chance of hosting planets detectable by microlensing. This suggests that more massive stars may be more likely to host planets of a fixed mass ratio that orbit near or beyond the snow line. These results also indicate the importance of hostmore »star mass measurements for exoplanets found by microlensing. The microlensing survey imaging data from NASA’s Nancy Grace Roman Space Telescope (formerly WFIRST) mission will be doing mass measurements like this for a huge number of planetary events.« less
  5. Aims. The light curve of the microlensing event KMT-2021-BLG-0240 exhibits a short-lasting anomaly with complex features near the peak at the 0.1 mag level from a single-lens single-source model. We conducted modeling of the lensing light curve under various interpretations to reveal the nature of the anomaly. Methods. It is found that the anomaly cannot be explained with the usual model based on a binary-lens (2L1S) or a binary-source (1L2S) interpretation. However, a 2L1S model with a planet companion can describe part of the anomaly, suggesting that the anomaly may be deformed by a tertiary lens component or a close companion to the source. From the additional modeling, we find that all the features of the anomaly can be explained with either a triple-lens (3L1S) model or a binary-lens binary-source (2L2S) model. However, it is difficult to validate the 2L2S model because the light curve does not exhibit signatures induced by the source orbital motion and the ellipsoidal variations expected by the close separation between the source stars according to the model. We, therefore, conclude that the two interpretations cannot be distinguished with the available data, and either can be correct. Results. According to the 3L1S solution, the lens ismore »a planetary system with two sub-Jovian-mass planets in which the planets have masses of 0.32–0.47 M J and 0.44–0.93 M J , and they orbit an M dwarf host. According to the 2L2S solution, on the other hand, the lens is a single planet system with a mass of ~0.21 M J orbiting a late K-dwarf host, and the source is a binary composed of a primary of a subgiant or a turnoff star and a secondary of a late G dwarf. The distance to the planetary system varies depending on the solution: ~7.0 kpc according to the 3L1S solution and ~6.6 kpc according to the 2L2S solution.« less