skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep-Learning-Incorporated Augmented Reality Application for Engineering Lab Training
Deep learning (DL) algorithms have achieved significantly high performance in object detection tasks. At the same time, augmented reality (AR) techniques are transforming the ways that we work and connect with people. With the increasing popularity of online and hybrid learning, we propose a new framework for improving students’ learning experiences with electrical engineering lab equipment by incorporating the abovementioned technologies. The DL powered automatic object detection component integrated into the AR application is designed to recognize equipment such as multimeter, oscilloscope, wave generator, and power supply. A deep neural network model, namely MobileNet-SSD v2, is implemented for equipment detection using TensorFlow’s object detection API. When a piece of equipment is detected, the corresponding AR-based tutorial will be displayed on the screen. The mean average precision (mAP) of the developed equipment detection model is 81.4%, while the average recall of the model is 85.3%. Furthermore, to demonstrate practical application of the proposed framework, we develop a multimeter tutorial where virtual models are superimposed on real multimeters. The tutorial includes images and web links as well to help users learn more effectively. The Unity3D game engine is used as the primary development tool for this tutorial to integrate DL and AR frameworks and create immersive scenarios. The proposed framework can be a useful foundation for AR and machine-learning-based frameworks for industrial and educational training.  more » « less
Award ID(s):
2129092 2129093
PAR ID:
10350628
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Applied Sciences
Volume:
12
Issue:
10
ISSN:
2076-3417
Page Range / eLocation ID:
5159
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many issues can reduce the reproducibility and replicability of deep learning (DL) research and application in remote sensing, including the complexity and customizability of architectures, variable model training and assessment processes and practice, inability to fully control random components of the modeling workflow, data leakage, computational demands, and the inherent nature of the process, which is complex, difficult to perform systematically, and challenging to fully document. This communication discusses key issues associated with convolutional neural network (CNN)-based DL in remote sensing for undertaking semantic segmentation, object detection, and instance segmentation tasks and offers suggestions for best practices for enhancing reproducibility and replicability and the subsequent utility of research results, proposed workflows, and generated data. We also highlight lingering issues and challenges facing researchers as they attempt to improve the reproducibility and replicability of their experiments. 
    more » « less
  2. Deep-learning (DL)-based object detection algorithms can greatly benefit the community at large in fighting fires, advancing climate intelligence, and reducing health complications caused by hazardous smoke particles. Existing DL-based techniques, which are mostly based on convolutional networks, have proven to be effective in wildfire detection. However, there is still room for improvement. First, existing methods tend to have some commercial aspects, with limited publicly available data and models. In addition, studies aiming at the detection of wildfires at the incipient stage are rare. Smoke columns at this stage tend to be small, shallow, and often far from view, with low visibility. This makes finding and labeling enough data to train an efficient deep learning model very challenging. Finally, the inherent locality of convolution operators limits their ability to model long-range correlations between objects in an image. Recently, encoder–decoder transformers have emerged as interesting solutions beyond natural language processing to help capture global dependencies via self- and inter-attention mechanisms. We propose Nemo: a set of evolving, free, and open-source datasets, processed in standard COCO format, and wildfire smoke and fine-grained smoke density detectors, for use by the research community. We adapt Facebook’s DEtection TRansformer (DETR) to wildfire detection, which results in a much simpler technique, where the detection does not rely on convolution filters and anchors. Nemo is the first open-source benchmark for wildfire smoke density detection and Transformer-based wildfire smoke detection tailored to the early incipient stage. Two popular object detection algorithms (Faster R-CNN and RetinaNet) are used as alternatives and baselines for extensive evaluation. Our results confirm the superior performance of the transformer-based method in wildfire smoke detection across different object sizes. Moreover, we tested our model with 95 video sequences of wildfire starts from the public HPWREN database. Our model detected 97.9% of the fires in the incipient stage and 80% within 5 min from the start. On average, our model detected wildfire smoke within 3.6 min from the start, outperforming the baselines. 
    more » « less
  3. Abstract Giant star-forming clumps (GSFCs) are areas of intensive star-formation that are commonly observed in high-redshift (z ≳ 1) galaxies but their formation and role in galaxy evolution remain unclear. Observations of low-redshift clumpy galaxy analogues are rare but the availability of wide-field galaxy survey data makes the detection of large clumpy galaxy samples much more feasible. Deep Learning (DL), and in particular Convolutional Neural Networks (CNNs), have been successfully applied to image classification tasks in astrophysical data analysis. However, one application of DL that remains relatively unexplored is that of automatically identifying and localizing specific objects or features in astrophysical imaging data. In this paper, we demonstrate the use of DL-based object detection models to localize GSFCs in astrophysical imaging data. We apply the Faster Region-based Convolutional Neural Network object detection framework (FRCNN) to identify GSFCs in low-redshift (z ≲ 0.3) galaxies. Unlike other studies, we train different FRCNN models on observational data that was collected by the Sloan Digital Sky Survey and labelled by volunteers from the citizen science project ‘Galaxy Zoo: Clump Scout’. The FRCNN model relies on a CNN component as a ‘backbone’ feature extractor. We show that CNNs, that have been pre-trained for image classification using astrophysical images, outperform those that have been pre-trained on terrestrial images. In particular, we compare a domain-specific CNN – ‘Zoobot’ – with a generic classification backbone and find that Zoobot achieves higher detection performance. Our final model is capable of producing GSFC detections with a completeness and purity of ≥0.8 while only being trained on ∼5000 galaxy images. 
    more » « less
  4. Abstract This paper explores deep learning (DL) methods that are used or have the potential to be used for traffic video analysis, emphasising driving safety for both autonomous vehicles and human‐operated vehicles. A typical processing pipeline is presented, which can be used to understand and interpret traffic videos by extracting operational safety metrics and providing general hints and guidelines to improve traffic safety. This processing framework includes several steps, including video enhancement, video stabilisation, semantic and incident segmentation, object detection and classification, trajectory extraction, speed estimation, event analysis, modelling, and anomaly detection. The main goal is to guide traffic analysts to develop their own custom‐built processing frameworks by selecting the best choices for each step and offering new designs for the lacking modules by providing a comparative analysis of the most successful conventional and DL‐based algorithms proposed for each step. Existing open‐source tools and public datasets that can help train DL models are also reviewed. To be more specific, exemplary traffic problems are reviewed and required steps are mentioned for each problem. Besides, connections to the closely related research areas of drivers' cognition evaluation, crowd‐sourcing‐based monitoring systems, edge computing in roadside infrastructures, automated driving systems‐equipped vehicles are investigated, and the missing gaps are highlighted. Finally, commercial implementations of traffic monitoring systems, their future outlook, and open problems and remaining challenges for widespread use of such systems are reviewed. 
    more » « less
  5. Efficiency is essential to support ever-growing datasets, especially for Deep Learning (DL) systems. DL frameworks have traditionally embraced deferred execution-style DL code—supporting symbolic, graph-based Deep Neural Network (DNN) computation. While scalable, such development is error-prone, non-intuitive, and difficult to debug. Consequently, more natural, imperative DL frameworks encouraging eager execution have emerged but at the expense of run-time performance. Though hybrid approaches aim for the "best of both worlds," using them effectively requires subtle considerations. Our key insight is that, while DL programs typically execute sequentially, hybridizing imperative DL code resembles parallelizing sequential code in traditional systems. Inspired by this, we present an automated refactoring approach that assists developers in determining which otherwise eagerly-executed imperative DL functions could be effectively and efficiently executed as graphs. The approach features novel static imperative tensor and side-effect analyses for Python. Due to its inherent dynamism, analyzing Python may be unsound; however, the conservative approach leverages a speculative (keyword-based) analysis for resolving difficult cases that informs developers of any assumptions made. The approach is: (i) implemented as a plug-in to the PyDev Eclipse IDE that integrates the WALA Ariadne analysis framework and (ii) evaluated on nineteen DL projects consisting of 132 KLOC. The results show that 326 of 766 candidate functions (42.56%) were refactorable, and an average relative speedup of 2.16 on performance tests was observed with negligible differences in model accuracy. The results indicate that the approach is useful in optimizing imperative DL code to its full potential. 
    more » « less