skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CESM2-CLM5 Framework for Hindcasting Tropical Mountain Glaciation: Examples and Pre-Industrial Validation Analysis
This data archive contains data and code related to simulating tropical mountain glaciation within high-resolution standalone simulations by the Community Land Model version 5 (CLM5) with a data atmosphere created by the Community Earth System Model version 2. The information here is intended allow one to perform simulations of this type as well as evaluate the performance of the CESM2-CLM5 simulation framework for example tropical mountain glaciers under pre-industrial climate conditions. This work was funded by the Sedimentary Geology and Paleobiology program of the National Science Foundation (EAR-1849754).  more » « less
Award ID(s):
1849754
PAR ID:
10350662
Author(s) / Creator(s):
Publisher / Repository:
Mendeley
Date Published:
Subject(s) / Keyword(s):
Natural Sciences
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Earth system models (ESMs) have been rapidly developed in recent decades to advance our understanding of climate change‐carbon cycle feedback. However, those models are massive in coding, require expensive computational resources, and have difficulty in diagnosing their performance. It is highly desirable to develop ESMs with modularity and effective diagnostics. Toward these goals, we implemented a matrix approach to the Community Land Model version 5 (CLM5) to represent carbon and nitrogen cycles. Specifically, we reorganized 18 balance equations each for carbon and nitrogen cycles among the 18 vegetation pools in the original CLM5 into two matrix equations. Similarly, 140 balance equations each for carbon and nitrogen cycles among the 140 soil pools were reorganized into two additional matrix equations. The vegetation carbon and nitrogen matrix equations are connected to soil matrix equations via litterfall. The matrix equations fully reproduce simulations of carbon and nitrogen dynamics by the original model. The computational cost for forwarding simulation of the CLM5 matrix model was 26% more expensive than the original model, largely due to calculation of additional diagnostic variables, but the spin‐up computational cost was significantly saved. We showed a case study on modeled soil carbon storage under two forcing data sets to illustrate the diagnostic capability that the matrix approach uniquely offers to understand simulation results of global carbon and nitrogen dynamics. The successful implementation of the matrix approach to CLM5, one of the most complex land models, demonstrates that most, if not all, the biogeochemical models can be reorganized into the matrix form to gain high modularity, effective diagnostics, and accelerated spin‐up. 
    more » « less
  2. null (Ed.)
    Abstract. Land models are essential tools for understanding and predicting terrestrial processes and climate–carbon feedbacks in the Earth system, but uncertainties in their future projections are poorly understood. Improvements in physical process realism and the representation of human influence arguably make models more comparable to reality but also increase the degrees of freedom in model configuration, leading to increased parametric uncertainty in projections. In this work we design and implement a machine learning approach to globally calibrate a subset of the parameters of the Community Land Model, version 5 (CLM5) to observations of carbon and water fluxes. We focus on parameters controlling biophysical features such as surface energy balance, hydrology, and carbon uptake. We first use parameter sensitivity simulations and a combination of objective metrics including ranked global mean sensitivity to multiple output variables and non-overlapping spatial pattern responses between parameters to narrow the parameter space and determine a subset of important CLM5 biophysical parameters for further analysis. Using a perturbed parameter ensemble, we then train a series of artificial feed-forward neural networks to emulate CLM5 output given parameter values as input. We use annual mean globally aggregated spatial variability in carbon and water fluxes as our emulation and calibration targets. Validation and out-of-sample tests are used to assess the predictive skill of the networks, and we utilize permutation feature importance and partial dependence methods to better interpret the results. The trained networks are then used to estimate global optimal parameter values with greater computational efficiency than achieved by hand tuning efforts and increased spatial scale relative to previous studies optimizing at a single site. By developing this methodology, our framework can help quantify the contribution of parameter uncertainty to overall uncertainty in land model projections. 
    more » « less
  3. Abstract Tropical mountain glaciers are an important water resource and highly impacted by recent climate change. Tropical mountain glaciation also occurred in the recent and deep past, which presents opportunities for better validating paleoclimate simulations in continental interiors and mountainous regions but requires bridging global model scales (hundreds of kilometers) with the1–10 km scale of glaciers when paleotopography is poorly known. Here, we hindcast tropical mountain glaciation in preindustrial time by using global climate model meteorology to force standalone simulations in its land component that use high‐resolution topography to resolve selected tropical mountain glaciers. These simulations underestimate observed equilibrium line altitudes (ELAs) by 249330 m, but the simulated ELA and snow lines capture observed intermountain ELA variability. Errors in large‐scale model precipitation and ELA reconstruction uncertainty are the main contributors to this bias. 
    more » « less
  4. Abstract Recent advances in satellite observations of solar‐induced chlorophyll fluorescence (SIF) provide a new opportunity to constrain the simulation of terrestrial gross primary productivity (GPP). Accurate representation of the processes driving SIF emission and its radiative transfer to remote sensing sensors is an essential prerequisite for data assimilation. Recently, SIF simulations have been incorporated into several land surface models, but the scaling of SIF from leaf‐level to canopy‐level is usually not well‐represented. Here, we incorporate the simulation of far‐red SIF observed at nadir into the Community Land Model version 5 (CLM5). Leaf‐level fluorescence yield was simulated by a parametric simplification of the Soil Canopy‐Observation of Photosynthesis and Energy fluxes model (SCOPE). And an efficient and accurate method based on escape probability is developed to scale SIF from leaf‐level to top‐of‐canopy while taking clumping and the radiative transfer processes into account. SIF simulated by CLM5 and SCOPE agreed well at sites except one in needleleaf forest (R2 > 0.91, root‐mean‐square error <0.19 W⋅m−2⋅sr−1⋅μm−1), and captured the day‐to‐day variation of tower‐measured SIF at temperate forest sites (R2 > 0.68). At the global scale, simulated SIF generally captured the spatial and seasonal patterns of satellite‐observed SIF. Factors including the fluorescence emission model, clumping, bidirectional effect, and leaf optical properties had considerable impacts on SIF simulation, and the discrepancies between simulate d and observed SIF varied with plant functional type. By improving the representation of radiative transfer for SIF simulation, our model allows better comparisons between simulated and observed SIF toward constraining GPP simulations. 
    more » « less
  5. Abstract Numerous studies have examined the reliability of various precipitation products over the Mekong River Basin (MRB) and modeled its basin hydrology. However, there is a lack of comprehensive studies on precipitation‐induced uncertainties in hydrological simulations using process‐based land surface models. This study examines the propagation of precipitation uncertainty into hydrological simulations over the entire MRB using the Community Land Model version 5 (CLM5) at a high spatial resolution of 0.05° (∼5 km) and without any parameter calibration. Simulations conducted using different precipitation datasets are compared to investigate the discrepancies in streamflow, terrestrial water storage (TWS), soil moisture, and evapotranspiration (ET) caused by precipitation uncertainty. Results indicate that precipitation is a key determinant of simulated streamflow in the MRB; peak flow and soil moisture are particularly sensitive to precipitation input. Further, precipitation data with a higher spatial resolution did not improve the simulations, contrary to the common perception that using meteorological forcing with higher spatial resolution would improve hydrological simulations. In addition, since high flow indicators are particularly influenced by precipitation data, the choice of precipitation data could directly impact flood pulse simulations in the MRB. Notable differences are also found among TWS, soil moisture, and ET simulated using different precipitation products. Moreover, TWS, soil moisture, and ET exhibit a varying degree of sensitivity to precipitation uncertainty. This study provides crucial insights on precipitation‐induced uncertainties in process‐based hydrological modeling and uncovers these uncertainties in the MRB. 
    more » « less