skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Representation of Leaf‐to‐Canopy Radiative Transfer Processes Improves Simulation of Far‐Red Solar‐Induced Chlorophyll Fluorescence in the Community Land Model Version 5
Abstract Recent advances in satellite observations of solar‐induced chlorophyll fluorescence (SIF) provide a new opportunity to constrain the simulation of terrestrial gross primary productivity (GPP). Accurate representation of the processes driving SIF emission and its radiative transfer to remote sensing sensors is an essential prerequisite for data assimilation. Recently, SIF simulations have been incorporated into several land surface models, but the scaling of SIF from leaf‐level to canopy‐level is usually not well‐represented. Here, we incorporate the simulation of far‐red SIF observed at nadir into the Community Land Model version 5 (CLM5). Leaf‐level fluorescence yield was simulated by a parametric simplification of the Soil Canopy‐Observation of Photosynthesis and Energy fluxes model (SCOPE). And an efficient and accurate method based on escape probability is developed to scale SIF from leaf‐level to top‐of‐canopy while taking clumping and the radiative transfer processes into account. SIF simulated by CLM5 and SCOPE agreed well at sites except one in needleleaf forest (R2 > 0.91, root‐mean‐square error <0.19 W⋅m−2⋅sr−1⋅μm−1), and captured the day‐to‐day variation of tower‐measured SIF at temperate forest sites (R2 > 0.68). At the global scale, simulated SIF generally captured the spatial and seasonal patterns of satellite‐observed SIF. Factors including the fluorescence emission model, clumping, bidirectional effect, and leaf optical properties had considerable impacts on SIF simulation, and the discrepancies between simulate d and observed SIF varied with plant functional type. By improving the representation of radiative transfer for SIF simulation, our model allows better comparisons between simulated and observed SIF toward constraining GPP simulations.  more » « less
Award ID(s):
2005574 2023205
PAR ID:
10374916
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
14
Issue:
3
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, solar-induced chlorophyll fluorescence (SIF) is a promising tool to estimate gross primary production (GPP). Photosynthesis gradually saturates with the increasing light, but fluorescence tends to keep increasing, leading to a nonlinear SIF-GPP relationship. This nonlinearity occurs for sunlit leaves but not for shaded leaves for which photosynthesis is light-limited. However, the separation of sunlit and shaded SIF has not been systematically investigated when estimating GPP from SIF. Therefore, it is promising to develop a model for GPP estimation considering such differences. This study proposed an approach to separate the total canopy SIF emission (SIFtotal) from TROPOspheric Monitoring Instrument (TROPOMI) SIF into their sunlit and shaded components (SIFsun and SIFshade). The nonlinearity and linearity in SIF-GPP relationships for sunlit and shaded leaves were incorporated into a two-leaf hybrid model, which was fitted using flux tower data and then evaluated using leave-one-site-out crossing validation. We also elucidated the distinct SIF-GPP relationships between sunlit and shaded leaves using the Soil-Canopy-Observation of Photosynthesis and the Energy balance (SCOPE) model simulation. Compared to previously used linear (R2 = 0.68, RMSE = 2.13 gC⋅m^-2*d^-1) or hyperbolic (R2 = 0.72, RMSE = 2.01 gC⋅m^-2⋅d^-1) model based on the big-leaf assumption, our proposed two-leaf hybrid model has the best performance on GPP estimation (R2 = 0.77, RMSE = 1.79 gC⋅m^-2⋅d^-1). We also applied this two-leaf hybrid model to estimate the global GPP during the main growing season in Northern Hemisphere, which were highly correlated with several existing GPP products, with R2 ranging from 0.79 to 0.88. These results will improve our understanding of the relationship between SIF and GPP for sunlit and shaded leaves and will advance application of satellite SIF data to GPP estimation. 
    more » « less
  2. Solar-induced chlorophyll fluorescence (SIF) is widely accepted as a proxy for gross primary productivity (GPP). Among the various SIF measurements, tower-based SIF measurements allow for continuous monitoring of SIF variation at a canopy scale with high temporal resolution, making it suitable for monitoring highly variable plant physiological responses to environmental changes. However, because of the strong and close relationship between SIF and absorbed photosynthetically active radiation (aPAR), it may be difficult to detect the influence of environmental drivers other than light conditions. Among the drivers, atmospheric dryness (vapor pressure deficit, VPD) is projected to increase as drought becomes more frequent and severe in the future, negatively impacting plants. In this study, we evaluated the tower-based high-frequency SIF measurement as a tool for detecting plant response to highly variable VPD. The study was performed in a mixed temperate forest in Virginia, USA, where a 40-m-tall flux tower has been measuring gas and energy exchanges and ancillary environmental drivers, and the Fluospec 2 system has been measuring SIF. We show that a proper definition of light availability to vegetation can reproduce SIF response to changing VPD that is comparable to GPP response as estimated from eddy covariance measurement: GPP decreased with rising VPD regardless of how aPAR was defined, whereas SIF decreased only when aPAR was defined as the PAR absorbed by chlorophyll (aPARchl) or simulated by a model (Soil Canopy Observation, Photochemistry and Energy fluxes, SCOPE). We simulated the effect of VPD on SIF with two different simulation modes of fluorescence emission representing contrasting moisture conditions, ‘Moderate’ and ‘Soil Moisture (SM) Stress’ modes. The decreasing SIF to rising VPD was only found in the SM Stress mode, implying that the SIF-VPD relationship depends on soil moisture conditions. Furthermore, we observed a similar response of SIF to VPD at hourly and daily scales, indicating that satellite measurements can be used to study the effects of environmental drivers other than light conditions. Finally, the definition of aPAR emphasizes the importance of canopy structure research to interpret remote sensing observations properly. 
    more » « less
  3. null (Ed.)
    Abstract. At the leaf level, stomata control the exchange of water and carbon across the air–leaf interface. Stomatal conductance is typically modeledempirically, based on environmental conditions at the leaf surface. Recently developed stomatal optimization models show great skills at predictingcarbon and water fluxes at both the leaf and tree levels. However, how well the optimization models perform atlarger scales has not been extensively evaluated. Furthermore, stomatal models are often used with simple single-leaf representations of canopy radiative transfer (RT), such asbig-leaf models. Nevertheless, the single-leaf canopy RT schemes do not have the capability to model optical properties of the leaves nor the entirecanopy. As a result, they are unable to directly link canopy optical properties with light distribution within the canopy to remote sensing dataobserved from afar. Here, we incorporated one optimization-based and two empirical stomatal models with a comprehensive RT model in the landcomponent of a new Earth system model within CliMA, the Climate Modelling Alliance. The model allowed us to simultaneously simulate carbon and waterfluxes as well as leaf and canopy reflectance and fluorescence spectra. We tested our model by comparing our modeled carbon and water fluxes andsolar-induced chlorophyll fluorescence (SIF) to two flux tower observations (a gymnosperm forest and an angiosperm forest) and satellite SIFretrievals, respectively. All three stomatal models quantitatively predicted the carbon and water fluxes for both forests. The optimization model,in particular, showed increased skill in predicting the water flux given the lower error (ca. 14.2 % and 21.8 % improvement for thegymnosperm and angiosperm forests, respectively) and better 1:1 comparison (slope increases from ca. 0.34 to 0.91 for the gymnosperm forest andfrom ca. 0.38 to 0.62 for the angiosperm forest). Our model also predicted the SIF yield, quantitatively reproducing seasonal cycles for bothforests. We found that using stomatal optimization with a comprehensive RT model showed high accuracy in simulating land surface processes. Theever-increasing number of regional and global datasets of terrestrial plants, such as leaf area index and chlorophyll contents, will helpparameterize the land model and improve future Earth system modeling in general. 
    more » « less
  4. Solar-Induced Chlorophyll Fluorescence (SIF) can provide key information about the state of photosynthesis and offers the prospect of defining remote sensing-based estimation of Gross Primary Production (GPP). There is strong theoretical support for the link between SIF and GPP and this relationship has been empirically demonstrated using ground-based, airborne, and satellite-based SIF observations, as well as modeling. However, most evaluations have been based on monthly and annual scales, yet the GPP:SIF relations can be strongly influenced by both vegetation structure and physiology. At the monthly timescales, the structural response often dominates but short-term physiological variations can strongly impact the GPP:SIF relations. Here, we test how well SIF can predict the inter-daily variation of GPP during the growing season and under stress conditions, while taking into account the local effect of sites and abiotic conditions. We compare the accuracy of GPP predictions from SIF at different timescales (half-hourly, daily, and weekly), while evaluating effect of adding environmental variables to the relationship. We utilize observations for years 2018–2019 at 31 mid-latitudes, forested, eddy covariance (EC) flux sites in North America and Europe and use TROPOMI satellite data for SIF. Our results show that SIF is a good predictor of GPP, when accounting for inter-site variation, probably due to differences in canopy structure. Seasonally averaged leaf area index, fraction of absorbed photosynthetically active radiation (fPAR) and canopy conductance provide a predictor to the site-level effect. We show that fPAR is the main factor driving errors in the linear model at high temporal resolution. Adding water stress indicators, namely canopy conductance, to a multi-linear SIF-based GPP model provides the best improvement in the model precision at the three considered timescales, showing the importance of accounting for water stress in GPP predictions, independent of the SIF signal. SIF is a promising predictor for GPP among other remote sensing variables, but more focus should be placed on including canopy structure, and water stress effects in the relationship, especially when considering intra-seasonal, and inter- and intra-daily resolutions. 
    more » « less
  5. Abstract Robust carbon monitoring systems are needed for land managers to assess and mitigate the changing effects of ecosystem stress on western United States forests, where most aboveground carbon is stored in mountainous areas. Atmospheric carbon uptake via gross primary productivity (GPP) is an important indicator of ecosystem function and is particularly relevant to carbon monitoring systems. However, limited ground-based observations in remote areas with complex topography represent a significant challenge for tracking regional-scale GPP. Satellite observations can help bridge these monitoring gaps, but the accuracy of remote sensing methods for inferring GPP is still limited in montane evergreen needleleaf biomes, where (a) photosynthetic activity is largely decoupled from canopy structure and chlorophyll content, and (b) strong heterogeneity in phenology and atmospheric conditions is difficult to resolve in space and time. Using monthly solar-induced chlorophyll fluorescence (SIF) sampled at ∼4 km from the TROPOspheric Monitoring Instrument (TROPOMI), we show that high-resolution satellite-observed SIF followed ecological expectations of seasonal and elevational patterns of GPP across a 3000 m elevation gradient in the Sierra Nevada mountains of California. After accounting for the effects of high reflected radiance in TROPOMI SIF due to snow cover, the seasonal and elevational patterns of SIF were well correlated with GPP estimates from a machine-learning model (FLUXCOM) and a land surface model (CLM5.0-SP), outperforming other spectral vegetation indices. Differences in the seasonality of TROPOMI SIF and GPP estimates were likely attributed to misrepresentation of moisture limitation and winter photosynthetic activity in FLUXCOM and CLM5.0 respectively, as indicated by discrepancies with GPP derived from eddy covariance observations in the southern Sierra Nevada. These results suggest that satellite-observed SIF can serve as a useful diagnostic and constraint to improve upon estimates of GPP toward multiscale carbon monitoring systems in montane, evergreen conifer biomes at regional scales. 
    more » « less