skip to main content

This content will become publicly available on June 8, 2023

Title: Annotation-free delineation of prokaryotic homology groups
Phylogenomic studies of prokaryotic taxa often assume conserved marker genes are homologous across their length. However, processes such as horizontal gene transfer or gene duplication and loss may disrupt this homology by recombining only parts of genes, causing gene fission or fusion. We show using simulation that it is necessary to delineate homology groups in a set of bacterial genomes without relying on gene annotations to define the boundaries of homologous regions. To solve this problem, we have developed a graph-based algorithm to partition a set of bacterial genomes into Maximal Homologous Groups of sequences ( MHGs ) where each MHG is a maximal set of maximum-length sequences which are homologous across the entire sequence alignment. We applied our algorithm to a dataset of 19 Enterobacteriaceae species and found that MHGs cover much greater proportions of genomes than markers and, relatedly, are less biased in terms of the functions of the genes they cover. We zoomed in on the correlation between each individual marker and their overlapping MHGs, and show that few phylogenetic splits supported by the markers are supported by the MHGs while many marker-supported splits are contradicted by the MHGs. A comparison of the species tree inferred from more » marker genes with the species tree inferred from MHGs suggests that the increased bias and lack of genome coverage by markers causes incorrect inferences as to the overall relationship between bacterial taxa. « less
Authors:
; ;
Editors:
Kolodny, Rachel
Award ID(s):
2030604
Publication Date:
NSF-PAR ID:
10350694
Journal Name:
PLOS Computational Biology
Volume:
18
Issue:
6
Page Range or eLocation-ID:
e1010216
ISSN:
1553-7358
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    To examine phylogenetic heterogeneity in turtle evolution, we collected thousands of high-confidence single-copy orthologs from 19 genome assemblies representative of extant turtle diversity and estimated a phylogeny with multispecies coalescent and concatenated partitioned methods. We also collected next-generation sequences from 26 turtle species and assembled millions of biallelic markers to reconstruct phylogenies based on annotated regions from the western painted turtle (Chrysemys picta bellii) genome (coding regions, introns, untranslated regions, intergenic, and others). We then measured gene tree-species tree discordance, as well as gene and site heterogeneity at each node in the inferred trees, and tested for temporal patterns in phylogenomic conflict across turtle evolution. We found strong and consistent support for all bifurcations in the inferred turtle species phylogenies. However, a number of genes, sites, and genomic features supported alternate relationships between turtle taxa. Our results suggest that gene tree-species tree discordance in these data sets is likely driven by population-level processes such as incomplete lineage sorting. We found very little effect of substitutional saturation on species tree topologies, and no clear phylogenetic patterns in codon usage bias and compositional heterogeneity. There was no correlation between gene and site concordance, node age, and DNA substitution rate across mostmore »annotated genomic regions. Our study demonstrates that heterogeneity is to be expected even in well-resolved clades such as turtles, and that future phylogenomic studies should aim to sample as much of the genome as possible in order to obtain accurate phylogenies for assessing conservation priorities in turtles. [Discordance; genomes; phylogeny; turtles.]

    « less
  2. Abstract Marker selection has emerged as an important component of phylogenomic study design due to rising concerns of the effects of gene tree estimation error, model misspecification, and data-type differences. Researchers must balance various trade-offs associated with locus length and evolutionary rate among other factors. The most commonly used reduced representation data sets for phylogenomics are ultraconserved elements (UCEs) and Anchored Hybrid Enrichment (AHE). Here, we introduce Rapidly Evolving Long Exon Capture (RELEC), a new set of loci that targets single exons that are both rapidly evolving (evolutionary rate faster than RAG1) and relatively long in length (>1,500 bp), while at the same time avoiding paralogy issues across amniotes. We compare the RELEC data set to UCEs and AHE in squamate reptiles by aligning and analyzing orthologous sequences from 17 squamate genomes, composed of 10 snakes and 7 lizards. The RELEC data set (179 loci) outperforms AHE and UCEs by maximizing per-locus genetic variation while maintaining presence and orthology across a range of evolutionary scales. RELEC markers show higher phylogenetic informativeness than UCE and AHE loci, and RELEC gene trees show greater similarity to the species tree than AHE or UCE gene trees. Furthermore, with fewer loci, RELEC remains computationally tractablemore »for full Bayesian coalescent species tree analyses. We contrast RELEC to and discuss important aspects of comparable methods, and demonstrate how RELEC may be the most effective set of loci for resolving difficult nodes and rapid radiations. We provide several resources for capturing or extracting RELEC loci from other amniote groups.« less
  3. Abstract

    Contamination of a genetic sample with DNA from one or more nontarget species is a continuing concern of molecular phylogenetic studies, both Sanger sequencing studies and next-generation sequencing studies. We developed an automated pipeline for identifying and excluding likely cross-contaminated loci based on the detection of bimodal distributions of patristic distances across gene trees. When contamination occurs between samples within a data set, a comparison between a contaminated sample and its contaminant taxon will yield bimodal distributions with one peak close to zero patristic distance. This new method does not rely on a priori knowledge of taxon relatedness nor does it determine the causes(s) of the contamination. Exclusion of putatively contaminated loci from a data set generated for the insect family Cicadidae showed that these sequences were affecting some topological patterns and branch supports, although the effects were sometimes subtle, with some contamination-influenced relationships exhibiting strong bootstrap support. Long tip branches and outlier values for one anchored phylogenomic pipeline statistic (AvgNHomologs) were correlated with the presence of contamination. While the anchored hybrid enrichment markers used here, which target hemipteroid taxa, proved effective in resolving deep and shallow level Cicadidae relationships in aggregate, individual markers contained inadequate phylogenetic signal, inmore »part probably due to short length. The cleaned data set, consisting of 429 loci, from 90 genera representing 44 of 56 current Cicadidae tribes, supported three of the four sampled Cicadidae subfamilies in concatenated-matrix maximum likelihood (ML) and multispecies coalescent-based species tree analyses, with the fourth subfamily weakly supported in the ML trees. No well-supported patterns from previous family-level Sanger sequencing studies of Cicadidae phylogeny were contradicted. One taxon (Aragualna plenalinea) did not fall with its current subfamily in the genetic tree, and this genus and its tribe Aragualnini is reclassified to Tibicininae following morphological re-examination. Only subtle differences were observed in trees after the removal of loci for which divergent base frequencies were detected. Greater success may be achieved by increased taxon sampling and developing a probe set targeting a more recent common ancestor and longer loci. Searches for contamination are an essential step in phylogenomic analyses of all kinds and our pipeline is an effective solution. [Auchenorrhyncha; base-composition bias; Cicadidae; Cicadoidea; Hemiptera; phylogenetic conflict.]

    « less
  4. Abstract

    Genomics is narrowing uncertainty in the phylogenetic structure for many amniote groups. For one of the most diverse and species-rich groups, the squamate reptiles (lizards, snakes, and amphisbaenians), an inverse correlation between the number of taxa and loci sampled still persists across all publications using DNA sequence data and reaching a consensus on the relationships among them has been highly problematic. In this study, we use high-throughput sequence data from 289 samples covering 75 families of squamates to address phylogenetic affinities, estimate divergence times, and characterize residual topological uncertainty in the presence of genome-scale data. Importantly, we address genomic support for the traditional taxonomic groupings Scleroglossa and Macrostomata using novel machine-learning techniques. We interrogate genes using various metrics inherent to these loci, including parsimony-informative sites (PIS), phylogenetic informativeness, length, gaps, number of substitutions, and site concordance to understand why certain loci fail to find previously well-supported molecular clades and how they fail to support species-tree estimates. We show that both incomplete lineage sorting and poor gene-tree estimation (due to a few undesirable gene properties, such as an insufficient number of PIS), may account for most gene and species-tree discordance. We find overwhelming signal for Toxicofera, and also show thatmore »none of the loci included in this study supports Scleroglossa or Macrostomata. We comment on the origins and diversification of Squamata throughout the Mesozoic and underscore remaining uncertainties that persist in both deeper parts of the tree (e.g., relationships between Dibamia, Gekkota, and remaining squamates; among the three toxicoferan clades Iguania, Serpentes, and Anguiformes) and within specific clades (e.g., affinities among gekkotan, pleurodont iguanians, and colubroid families).

    « less
  5. Lerat, Emmanuelle (Ed.)
    Abstract Methylated CHH (mCHH) islands are peaks of CHH methylation that occur primarily upstream to genes. These regions are actively targeted by the methylation machinery, occur at boundaries between heterochromatin and euchromatin, and tend to be near highly expressed genes. Here we took an evolutionary perspective by studying upstream mCHH islands across a sample of eight grass species. Using a statistical approach to define mCHH islands as regions that differ from genome-wide background CHH methylation levels, we demonstrated that mCHH islands are common and associate with 39% of genes, on average. We hypothesized that islands should be more frequent in genomes of large size, because they have more heterochromatin and hence more need for defined boundaries. We found, however, that smaller genomes tended to have a higher proportion of genes associated with 5′ mCHH islands. Consistent with previous work suggesting that islands reflect the silencing of the edge of transposable elements (TEs), genes with nearby TEs were more likely to have mCHH islands. However, the presence of mCHH islands was not a function solely of TEs, both because the underlying sequences of islands were often not homologous to TEs and because genic properties also predicted the presence of 5′ mCHHmore »islands. These genic properties included length and gene-body methylation (gbM); in fact, in three of eight species, the absence of gbM was a stronger predictor of a 5′ mCHH island than TE proximity. In contrast, gene expression level was a positive but weak predictor of the presence of an island. Finally, we assessed whether mCHH islands were evolutionarily conserved by focusing on a set of 2,720 orthologs across the eight species. They were generally not conserved across evolutionary time. Overall, our data establish additional genic properties that are associated with mCHH islands and suggest that they are not just a consequence of the TE silencing machinery.« less