skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evolution and Functions of Plant U-Box Proteins: From Protein Quality Control to Signaling
Posttranslational modifications add complexity and diversity to cellular proteomes. One of the most prevalent modifications across eukaryotes is ubiquitination, which is orchestrated by E3 ubiquitin ligases. U-box-containing E3 ligases have massively expanded in the plant kingdom and have diversified into plant U-box proteins (PUBs). PUBs likely originated from two or three ancestral forms, fusing with diverse functional subdomains that resulted in neofunctionalization. Their emergence and diversification may reflect adaptations to stress during plant evolution, reflecting changes in the needs of plant proteomes to maintain cellular homeostasis. Through their close association with protein kinases, they are physically linked to cell signaling hubs and activate feedback loops by dynamically pairing with E2-ubiquitin-conjugating enzymes to generate distinct ubiquitin polymers that themselves act as signals. Here, we complement current knowledgewith comparative genomics to gain a deeper understanding of PUB function, focusing on their evolution and structural adaptations of key U-box residues, as well as their various roles in plant cells.  more » « less
Award ID(s):
2047396 2028283
PAR ID:
10350807
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Annual Review of Plant Biology
Volume:
73
Issue:
1
ISSN:
1543-5008
Page Range / eLocation ID:
93 to 121
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Target validation is key to the development of protein degrading molecules such as proteolysis‐targeting chimeras (PROTACs) to identify cellular proteins amenable for induced degradation by the ubiquitin‐proteasome system (UPS). Previously the HaloPROTAC system was developed to screen targets of PROTACs by linking the chlorohexyl group with the ligands of E3 ubiquitin ligases VHL and cIAP1 to recruit target proteins fused to the HaloTag for E3‐catalyzed ubiquitination. Reported here are HaloPROTACs that engage the cereblon (CRBN) E3 to ubiquitinate and degrade HaloTagged proteins. A focused library of CRBN‐pairing HaloPROTACs was synthesized and screened to identify efficient degraders of EGFP‐HaloTag fusion with higher activities than VHL‐engaging HaloPROTACs at sub‐micromolar concentrations of the compound. The CRBN‐engaging HaloPROTACs broadens the scope of the E3 ubiquitin ligases that can be utilized to screen suitable targets for induced protein degradation in the cell. 
    more » « less
  2. Chloroplasts are ancient organelles responsible for photosynthesis and various biosynthetic functions essential to most life on Earth. Many of these functions require tightly controlled regulatory processes to maintain homeostasis at the protein level. One such regulatory mechanism is the ubiquitin-proteasome system whose fundamental role is increasingly emerging in chloroplasts. In particular, the role of E3 ubiquitin ligases as determinants in the ubiquitination and degradation of specific intra-chloroplast proteins. Here, we highlight recent advances in understanding the roles of plant E3 ubiquitin ligases SP1, COP1, PUB4, CHIP, and TT3.1 as well as the ubiquitin-dependent segregase CDC48 in chloroplast function. 
    more » « less
  3. Summary Fungal phytopathogens can suppress plant immune mechanisms in order to colonize living host cells. Identifying all the molecular components involved is critical for elaborating a detailed systems‐level model of plant infection probing pathogen weaknesses; yet, the hierarchy of molecular events controlling fungal responses to the plant cell is not clear.Here we show how, in the blast fungusMagnaporthe oryzae, terminating rice innate immunity requires a dynamic network of redox‐responsive E3 ubiquitin ligases targeting fungal sirtuin 2 (Sir2), an antioxidation regulator required for suppressing the host oxidative burst.Immunoblotting, immunopurification, mass spectrometry and gene functional analyses showed that Sir2 levels responded to oxidative stress via a mechanism involving ubiquitination and three antagonistic E3 ubiquitin ligases: Grr1 and Ptr1 maintained basal Sir2 levels in the absence of oxidative stress; Upl3 facilitated Sir2 accumulation in response to oxidative stress. Grr1 and Upl3 interacted directly with Sir2 in a manner that decreased and scaled with oxidative stress, respectively.DeletingUPL3depleted Sir2 during growth in rice cells, triggering host immunity and preventing infection. OverexpressingSIR2in the Δupl3mutant remediated pathogenicity. Our work reveals how redox‐responsive E3 ubiquitin ligases inM. oryzaemediate Sir2 accumulation‐dependent antioxidation to modulate plant innate immunity and host susceptibility. 
    more » « less
  4. Generating new strategies to improve plant performance and yield in crop plants becomes increasingly relevant with ongoing and predicted global climate changes. E3 ligases that function as key regulators within the ubiquitin proteasome pathway often are involved in abiotic stress responses, development, and metabolism in plants. The aim of this research was to transiently downregulate an E3 ligase that uses BTB/POZ-MATH proteins as substrate adaptors in a tissue-specific manner. Interfering with the E3 ligase at the seedling stage and in developing seeds results in increased salt-stress tolerance and elevated fatty acid levels, respectively. This novel approach can help to improve specific traits in crop plants to maintain sustainable agriculture. 
    more » « less
  5. Abstract MotivationUbiquitination is widely involved in protein homeostasis and cell signaling. Ubiquitin E3 ligases are critical regulators of ubiquitination that recognize and recruit specific ubiquitination targets for the final rate-limiting step of ubiquitin transfer reactions. Understanding the ubiquitin E3 ligase activities will provide knowledge in the upstream regulator of the ubiquitination pathway and reveal potential mechanisms in biological processes and disease progression. Recent advances in mass spectrometry-based proteomics have enabled deep profiling of ubiquitylome in a quantitative manner. Yet, functional analysis of ubiquitylome dynamics and pathway activity remains challenging. ResultsHere, we developed a UbE3-APA, a computational algorithm and stand-alone python-based software for Ub E3 ligase Activity Profiling Analysis. Combining an integrated annotation database with statistical analysis, UbE3-APA identifies significantly activated or suppressed E3 ligases based on quantitative ubiquitylome proteomics datasets. Benchmarking the software with published quantitative ubiquitylome analysis confirms the genetic manipulation of SPOP enzyme activity through overexpression and mutation. Application of the algorithm in the re-analysis of a large cohort of ubiquitination proteomics study revealed the activation of PARKIN and the co-activation of other E3 ligases in mitochondria depolarization-induced mitophagy process. We further demonstrated the application of the algorithm in the DIA (data-independent acquisition)-based quantitative ubiquitylome analysis. Availability and implementationSource code and binaries are freely available for download at URL: https://github.com/Chenlab-UMN/Ub-E3-ligase-Activity-Profiling-Analysis, implemented in python and supported on Linux and MS Windows. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less