Abstract The fungusMagnaporthe oryzaecauses blast, the most devastating disease of cultivated rice. After penetrating the leaf cuticle,M. oryzaegrows as a biotroph in intimate contact with living rice epidermal cells before necrotic lesions develop. Biotrophic growth requires maintaining metabolic homeostasis while suppressing plant defenses, but the metabolic connections and requirements involved are largely unknown. Here, we characterized theM. oryzaenucleoside diphosphate kinase‐encoding geneNDK1and discovered it was essential for facilitating biotrophic growth by suppressing the host oxidative burst—the first line of plant defense. NDK enzymes reversibly transfer phosphate groups from tri‐ to diphosphate nucleosides. Correspondingly, intracellular nucleotide pools were perturbed inM. oryzaestrains lackingNDK1through targeted gene deletion, compared to WT. This affected metabolic homeostasis: TCA, purine and pyrimidine intermediates, and oxidized NADP+, accumulated in Δndk1. cAMP and glutathione were depleted. ROS accumulated in Δndk1hyphae. Functional appressoria developed on rice leaf sheath surfaces, but Δndk1invasive hyphal growth was restricted and redox homeostasis was perturbed, resulting in unsuppressed host oxidative bursts that triggered immunity. We conclude Ndk1 modulates intracellular nucleotide pools to maintain redox balance via metabolic homeostasis, thus quenching the host oxidative burst and suppressing rice innate immunity during biotrophy.
more »
« less
Terminating rice innate immunity induction requires a network of antagonistic and redox‐responsive E3 ubiquitin ligases targeting a fungal sirtuin
Summary Fungal phytopathogens can suppress plant immune mechanisms in order to colonize living host cells. Identifying all the molecular components involved is critical for elaborating a detailed systems‐level model of plant infection probing pathogen weaknesses; yet, the hierarchy of molecular events controlling fungal responses to the plant cell is not clear.Here we show how, in the blast fungusMagnaporthe oryzae, terminating rice innate immunity requires a dynamic network of redox‐responsive E3 ubiquitin ligases targeting fungal sirtuin 2 (Sir2), an antioxidation regulator required for suppressing the host oxidative burst.Immunoblotting, immunopurification, mass spectrometry and gene functional analyses showed that Sir2 levels responded to oxidative stress via a mechanism involving ubiquitination and three antagonistic E3 ubiquitin ligases: Grr1 and Ptr1 maintained basal Sir2 levels in the absence of oxidative stress; Upl3 facilitated Sir2 accumulation in response to oxidative stress. Grr1 and Upl3 interacted directly with Sir2 in a manner that decreased and scaled with oxidative stress, respectively.DeletingUPL3depleted Sir2 during growth in rice cells, triggering host immunity and preventing infection. OverexpressingSIR2in the Δupl3mutant remediated pathogenicity. Our work reveals how redox‐responsive E3 ubiquitin ligases inM. oryzaemediate Sir2 accumulation‐dependent antioxidation to modulate plant innate immunity and host susceptibility.
more »
« less
- Award ID(s):
- 1758805
- PAR ID:
- 10455352
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 226
- Issue:
- 2
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- p. 523-540
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The blast fungusMagnaporthe oryzaeproduces invasive hyphae in living rice cells during early infection, separated from the host cytoplasm by plant-derived interfacial membranes. However, the mechanisms underpinning this intracellular biotrophic growth phase are poorly understood. Here, we show that theM. oryzaeserine/threonine protein kinase Rim15 promotes biotrophic growth by coordinating cycles of autophagy and glutaminolysis in invasive hyphae. Alongside inducing autophagy, Rim15 phosphorylates NAD-dependent glutamate dehydrogenase, resulting in increased levels of α-ketoglutarate that reactivate target-of-rapamycin (TOR) kinase signaling, which inhibits autophagy. DeletingRIM15attenuates invasive hyphal growth and triggers plant immunity; exogenous addition of α-ketoglutarate prevents these effects, while glucose addition only suppresses host defenses. Our results indicate that Rim15-dependent cycles of autophagic flux liberate α-ketoglutarate – via glutaminolysis – to reactivate TOR signaling and fuel biotrophic growth while conserving glucose for antioxidation-mediated host innate immunity suppression.more » « less
-
Iron- and reactive oxygen species (ROS)-dependent ferroptosis occurs in plant cells. Ca2+acts as a conserved key mediator to control plant immune responses. Here, we report a novel role of cytoplasmic Ca2+influx regulating ferroptotic cell death in rice immunity using pharmacological approaches. High Ca2+influx triggered iron-dependent ROS accumulation, lipid peroxidation, and subsequent hypersensitive response (HR) cell death in rice (Oryza sativa). DuringMagnaporthe oryzaeinfection, 14 different Ca2+influx regulators altered Ca2+, ROS and Fe2+accumulation,glutathione reductase(GR) expression, glutathione (GSH) depletion and lipid peroxidation, leading to ferroptotic cell death in rice. High Ca2+levels inhibited the reduction of glutathione isulphide (GSSG) to GSHin vitro. Ca2+chelation by ethylene glycol-bis (2-aminoethylether)-N, N, N’, N’-tetra-acetic acid (EGTA) suppressed apoplastic Ca2+influx in rice leaf sheaths during infection. Blocking apoplastic Ca2+influx into the cytoplasm by Ca2+chelation effectively suppressed Ca2+-mediated iron-dependent ROS accumulation and ferroptotic cell death. By contrast, acibenzolar-S-methyl (ASM), a plant defense activator, significantly enhanced Ca2+influx, as well as ROS and iron accumulation to trigger ferroptotic cell death in rice. The cytoplasmic Ca2+influx through calcium-permeable cation channels, including the putative resistosomes, could mediate iron- and ROS-dependent ferroptotic cell death under reducedGRexpression levels in rice immune responses.more » « less
-
Eukaryotic filamentous plant pathogens with biotrophic growth stages like the devastating hemibiotrophic rice blast fungus Magnaporthe oryzae grow for extended periods in living host plant cells without eliciting defense responses. M. oryzae elaborates invasive hyphae (IH) that grow in and between living rice cells while separated from host cytoplasm by plant-derived membrane interfaces. However, although critical to the plant infection process, the molecular mechanisms and metabolic strategies underpinning this intracellular growth phase are poorly understood. Eukaryotic cell growth depends on activated target-of-rapamycin (TOR) kinase signaling, which inhibits autophagy. Here, using live-cell imaging coupled with plate growth tests and RNAseq, proteomic, quantitative phosphoproteomics and metabolic approaches, we show how cycles of autophagy in IH modulate TOR reactivation via α-ketoglutarate to sustain biotrophic growth and maintain biotrophic interfacial membrane integrity in host rice cells. Deleting the M. oryzae serine-threonine protein kinase Rim15-encoding gene attenuated biotrophic growth, disrupted interfacial membrane integrity and abolished the in planta autophagic cycling we observe here for the first time in wild type. Δrim15 was also impaired for glutaminolysis and depleted for α-ketoglutarate. α-ketoglutarate treatment of Δrim15-infected leaf sheaths remediated Δrim15 biotrophic growth. In WT, α-ketoglutarate treatment suppressed autophagy. α-ketoglutarate signaling is amino acid prototrophy- and GS-GOGAT cycle-dependent. We conclude that, following initial IH elaboration, cycles of Rim15- dependent autophagic flux liberate α-ketoglutarate – via the GS-GOGAT cycle – as an amino acid-sufficiency signal to trigger TOR reactivation and promote fungal biotrophic growth in nutrient-restricted host rice cells.more » « less
-
Posttranslational modifications add complexity and diversity to cellular proteomes. One of the most prevalent modifications across eukaryotes is ubiquitination, which is orchestrated by E3 ubiquitin ligases. U-box-containing E3 ligases have massively expanded in the plant kingdom and have diversified into plant U-box proteins (PUBs). PUBs likely originated from two or three ancestral forms, fusing with diverse functional subdomains that resulted in neofunctionalization. Their emergence and diversification may reflect adaptations to stress during plant evolution, reflecting changes in the needs of plant proteomes to maintain cellular homeostasis. Through their close association with protein kinases, they are physically linked to cell signaling hubs and activate feedback loops by dynamically pairing with E2-ubiquitin-conjugating enzymes to generate distinct ubiquitin polymers that themselves act as signals. Here, we complement current knowledgewith comparative genomics to gain a deeper understanding of PUB function, focusing on their evolution and structural adaptations of key U-box residues, as well as their various roles in plant cells.more » « less
An official website of the United States government
