skip to main content


Title: Decision model with quantification of buyer-supplier trust in advanced technology enterprises
Purpose In the buyer-supplier relationship of a high-technology enterprise, the concepts of trust and risk are closely intertwined. Entering into a buyer-supplier relationship inherently involves a degree of risk, since there is always an opportunity for one of the parties to act opportunistically. Purchasing and supply managers play an important role in reducing the firm's risk profile, and must make decisions about whether or not to enter into, or remain in, a relationship with a supplier based on a subjective assessment of trust and risk. Design/methodology/approach In this paper, the authors seek to explore how trust in the buyer-supplier relationship can be quantitatively modeled in the presence of risk. The authors develop a model of trust between a buyer and supplier as a risk-based decision, in which a buyer decides to place trust in a supplier, who may either act cooperatively or opportunistically. The authors use a case study of intellectual property (IP) piracy in the electronics industry to illustrate the conceptual discussion and model development. Findings The authors produce a generalizable model that can be used to aid in decision-making and risk analysis for potential supply-chain partnerships, and is both a theoretical and practical innovation. However, the model can benefit a variety of high-technology enterprises. Originality/value While the topic of trust is widely discussed, few studies have attempted to derive a quantitative model to support trust-based decision making. This paper advanced the field of supply chain management by developing a model which relates risk and trust in the buyer-supplier relationship.  more » « less
Award ID(s):
1916760
NSF-PAR ID:
10350963
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Benchmarking: An International Journal
ISSN:
1463-5771
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    his research examines supply chain collaboration effects on organizational performance in global value chain (GVC) infrastructure by focusing on GVC disaggregation, market turbulence, inequality, market globalization, product diversity, exploitation, and technological breakthroughs. The research strives to develop a better understanding of global value chains through relational view, behavioral, and contingency theories along with institutional and stakeholder theories of supply chains. Based on conflicting insights from these theories, this research investigates how relationships and operational outcomes of collaboration fare when market turbulence is present. Data is obtained and analyzed from focal firms that are engaged in doing business in emerging markets (e.g., India), and headquartered in the United States. We investigate relational outcomes (e.g., trust, credibility, mutual respect, and relationship commitment) among supply chain partners, and found that these relational outcomes result in better operational outcomes (e.g., profitability, market share increase, revenue generation, etc.). From managerial standpoint, supply chain managers should focus on relational outcomes that can strengthen operational outcomes in GVCs resulting in stronger organizational performance. The research offers valuable insights for theory and practice of global value chains by focusing on the GVC disaggregation through the measurement of market turbulence, playing a key role in the success of collaborative buyer–supplier relationships (with a focus on US companies doing business in India) leading to an overall improved firm performance. 
    more » « less
  2. Nicola Dragoni, Joaquin Garcia-Alfaro (Ed.)
    Technology is being used increasingly for lowering the trust barrier in domains where collaboration and cooperation are necessary, but reliability and efficiency are critical due to high stakes. An example is an industrial marketplace where many suppliers must participate in production while ensuring reliable outcomes; hence, partnerships must be pursued with care. Online marketplaces like Xometry facilitate partnership formation by vetting suppliers and mediating the marketplace. How- ever, such an approach requires that all trust be vested in the middleman. This centralizes control, making the system vulnerable to being biased toward specific providers. The use of blockchains is now being explored to bridge the trust gap needed to support decentralizing marketplaces, allowing suppliers and customers to interact more directly by using the information on the blockchain. A typical scenario is the need to preserve privacy in certain interactions initiated by the buyer (e.g., protecting a buyer’s intellectual property during outsourcing negotiations). In this work, we initiate the formal study of matching between suppliers and buyers when buyer-privacy is required for some marketplace interactions and make the following contributions. First, we devise a formal security definition for private interactive matching in the Universally Composable (UC) Model that captures the privacy and correctness properties expected in specific supply chain marketplace interactions. Second, we provide a lean protocol based on any programmable blockchain, anonymous group signatures, and public-key encryption. Finally, we implement the protocol by instantiating some of the blockchain logic by extending the BigChainDB blockchain platform. 
    more » « less
  3. We study systemic risk in a supply chain network where firms are connected through purchase orders. Firms can be hit by cost or demand shocks, which can cause defaults. These shocks propagate through the supply chain network via input-output linkages between buyers and suppliers. Firms endogenously take contingency plans to mitigate the impact generated from disruptions. We show that, as long as firms have large initial equity buffers, network fragility is low if both buyer diversification and supplier diversification are low. We find that a single-sourcing strategy is beneficial for a firm only if the default probability of the firm’s supplier is low. Otherwise, a multiple-sourcing strategy is ex post more cost effective for a firm. Funding: J.R. Birge acknowledges financial support from the University of Chicago Booth School of Business. The research of A. Capponi has been supported by the NSF/CMMI CAREER-1752326 award. P.-C. Chen acknowledges financial support from the Research Grant Council of Hong Kong [Early Career Scheme Grant 27210118]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/opre.2022.2409 . 
    more » « less
  4. Abstract

    In this work, we proposed a two‐stage stochastic programming model for a four‐echelon supply chain problem considering possible disruptions at the nodes (supplier and facilities) as well as the connecting transportation modes and operational uncertainties in form of uncertain demands. The first stage decisions are supplier choice, capacity levels for manufacturing sites and warehouses, inventory levels, transportation modes selection, and shipment decisions for the certain periods, and the second stage anticipates the cost of meeting future demands subject to the first stage decision. Comparing the solution obtained for the two‐stage stochastic model with a multi‐period deterministic model shows that the stochastic model makes a better first stage decision to hedge against the future demand. This study demonstrates the managerial viability of the proposed model in decision making for supply chain network in which both disruption and operational uncertainties are accounted for.

     
    more » « less
  5. Abstract Factory in a box (FiB) is an emerging technology that meets the dynamic and diverse market demand by carrying a factory module on vehicles to perform on-site production near customers’ locations. It is suitable for meeting time-sensitive demands, such as the outbreak of disasters or epidemics/pandemics. Compared to traditional manufacturing, FiB poses a new challenge of frequently reconfiguring supply chain networks since the final production location changes as the vehicle carrying the factory travels. Supply chain network reconfiguration involves decisions regarding whether suppliers or manufacturers can be retained in the supply chain or replaced. Such a supply chain reconfiguration problem is coupled with manufacturing process planning, which assigns tasks to each manufacturer that impacts material flow in the supply chain network. Considering the supply chain reconfigurability, this article develops a new mathematical model based on nonlinear integer programming to optimize supply chain reconfiguration and assembly planning jointly. An evolutionary algorithm (EA) is developed and customized to the joint optimization of process planning and supplier/manufacturer selection. The performance of EA is verified with a nonlinear solver for a relaxed version of the problem. A case study on producing a medical product demonstrates the methodology in guiding supply chain reconfiguration and process planning as the final production site relocates in response to local demands. The methodology can be potentially generalized to supply chain and service process planning for a mobile hospital offering on-site medical services. 
    more » « less