skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Flight-Fecundity Trade-offs: A Possible Mechanistic Link in Plant–Herbivore–Pollinator Systems
Plant–herbivore and plant–pollinator interactions are both well-studied, but largely independent of each other. It has become increasingly recognized, however, that pollination and herbivory interact extensively in nature, with consequences for plant fitness. Here, we explore the idea that trade-offs in investment in insect flight and reproduction may be a mechanistic link between pollination and herbivory. We first provide a general background on trade-offs between flight and fecundity in insects. We then focus on Lepidoptera; larvae are generally herbivores while most adults are pollinators, making them ideal to study these links. Increased allocation of resources to flight, we argue, potentially increases a Lepidopteran insect pollinator’s efficiency, resulting in higher plant fitness. In contrast, allocation of resources to reproduction in the same insect species reduces plant fitness, because it leads to an increase in herbivore population size. We examine the sequence of resource pools available to herbivorous Lepidopteran larvae (maternally provided nutrients to the eggs, as well as leaf tissue), and to adults (nectar and nuptial gifts provided by the males to the females), which potentially are pollinators. Last, we discuss how subsequent acquisition and allocation of resources from these pools may alter flight–fecundity trade-offs, with concomitant effects both on pollinator performance and the performance of larval herbivores in the next generation. Allocation decisions at different times during ontogeny translate into costs of herbivory and/or benefits of pollination for plants, mechanistically linking herbivory and pollination.  more » « less
Award ID(s):
2122282
PAR ID:
10350982
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Plant Science
Volume:
13
ISSN:
1664-462X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite extensive work on both insect disease and plant reproduction, there is little research on the intersection of the two. Insect-infecting pathogens could disrupt the pollination process by affecting pollinator population density or traits. Pathogens may also infect insect herbivores and change herbivory, potentially altering resource allocation to plant reproduction. We conducted a meta-analysis to (1) summarize the literature on the effects of pathogens on insect pollinators and herbivores and (2) quantify the extent to which pathogens affect insect traits, with potential repercussions for plant reproduction. We found 39 articles that fit our criteria for inclusion, extracting 218 measures of insect traits for 21 different insect species exposed to 25 different pathogens. We detected a negative effect of pathogen exposure on insect traits, which varied by host function: pathogens had a significant negative effect on insects that were herbivores or carried multiple functions but not on insects that solely functioned as pollinators. Particular pathogen types were heavily studied in certain insect orders, with 7 of 11 viral pathogen studies conducted in Lepidoptera and 5 of 9 fungal pathogen studies conducted in Hymenoptera. Our results suggest that most studies have focused on a small set of host–pathogen pairs. To understand the implications for plant reproduction, future work is needed to directly measure the effects of pathogens on pollinator effectiveness. 
    more » « less
  2. Abstract Animals derive resources from their diet and allocate them to organismal functions such as growth, maintenance, reproduction, and dispersal. How variation in diet quality can affect resource allocation to life-history traits, in particular those important to locomotion and dispersal, is poorly understood. We hypothesize that, particularly for specialist herbivore insects that are in co-evolutionary arms races with host plants, changes in host plant will impact performance. From their coevolutionary arms-race with plants, to a complex migratory life history, Monarch butterflies are among the most iconic insect species worldwide. Population declines initiated international conservation efforts involving the replanting of a variety of milkweed species. However, this practice was implemented with little regard for how diverse defensive chemistry of milkweeds experienced by monarch larvae may affect adult fitness traits. We report that adult flight muscle investment, flight energetics, and maintenance costs depend on the host plant species of larvae, and correlate with concentration of milkweed-derived cardenolides sequestered by adults. Our findings indicate host plant species can impact monarchs by affecting fuel requirements for flight. 
    more » « less
  3. ABSTRACT Leaves are critical to plant photosynthesis and the loss of leaf area can have negative consequences for an individual's performance and fitness. Variation in plant defenses plays a large role in protecting their leaves from attack by insect herbivores. However, trade‐offs in allocation among growth, reproduction, and defense may limit the availability of resources for any one aspect of a plant's life‐history strategy, which would lead to greater herbivory in those plants that allocate more resources to growth or reproduction than to defense. Patterns of sex‐biased herbivory in dioecious plants are well documented yet are known to vary in the direction (female or male) of their bias. A greater concentration of conspecifics may also increase herbivore attack through negative density dependence. In order to test the hypothesis that sex‐biased herbivory varies as a function of conspecific density, we measured standing herbivory on 2350 leaves on 302 trees of the dioecious understory treeIryanthera hostmannii(Myristicaceae) situated in a large forest dynamics plot in a lowland tropical rain forest in Ecuador. We found no difference in standing herbivory between the 169 male and 133 female trees, nor for focal trees surrounded by higher densities of conspecifics. The slow‐growing, shade‐tolerant growth patterns ofI. hostmanniimay contribute to suppressed differential expression of secondary sex characters in leaf defenses, leading to similar levels of herbivory between males and females. Considering the factors that most strongly affect herbivory in dioecious species is important in understanding the evolution of sex‐related traits more broadly. 
    more » « less
  4. 1. Predicting how ecological interactions will respond to global change is a major challenge. Plants and their associated insect herbivores compose much of macroscopic diversity, yet how their interactions have been altered by recent environmental change remains underexplored. 2. To address this gap, we quantified herbivory on herbarium specimens of four plant species with records extending back 112 years. Our study focused on the northeastern US, where temperatures have increased rapidly over the last few decades. This region also represents a range of urban development, a form of global change that has shown variable effects on herbivores in the past studies. 3. Herbarium specimens collected in the early 2000s were 23% more likely to be damaged by herbivores than those collected in the early 1900s. Herbivory was greater following warmer winters and at low latitudes, suggesting that climate warming may drive increasing insect damage over time. In contrast, human population densities were negatively associated with herbivore damage. 4. To explore whether changes in insect occurrence or abundance might explain shifts in herbivory, we used insect observational records to build climate occupancy models for lepidopteran herbivores (butterflies and moths) of our focal plant species. 5. These models show that higher winter temperatures were associated with higher probability of insect herbivore presence, while urbanization was associated with reduced probability of herbivore presence, supporting a link between insect herbivore occurrence and herbivory mediated through environment. 6. Synthesis. Using a temporal record of plant herbivory that spans over a century, we show that both temperature and urbanization influence insect damage to plants, but in very different ways. Our results indicate that damage to plants by insect herbivores will likely continue to increase through time in the northeastern US as global temperatures rise, but that urbanization may disrupt local effects of winter warming on herbivory by excluding certain herbivores. These changes may scale to shape ecosystem processes that are driven by herbivory, including plant productivity. 
    more » « less
  5. Anthropogenic climate change is altering interactions among numerous species, including plants and pollinators. Plant-pollinator interactions, crucial for the persistence of most plant and many insect species, are threatened by climate change-driven phenological shifts. Phenological mismatches between plants and their pollinators may affect pollination services, and simulations indicated that these mismatches may reduce floral resources available to up to 50% of insect pollinator species. Although alpine plants rely heavily on vegetative reproduction, seedling recruitment and seed dispersal are likely to be important drivers of alpine community structure. Similarly, advanced flowering may expose plants to increased risk of frost damage and shifted soil moisture regimes; phenologically advanced plants will experience these environmental factors differently, which may alter their floral resource production. These effects may be dependent upon topography. Some species of alpine plants on the Niwot Ridge have displayed advanced phenology under treatments of advanced snowmelt (Forrester, 2021). However, little is understood about how these differences in distribution and phenology affect pollinator community composition and plant fecundity. Here we strive to examine how experimentally-induced changes in the timing of flowering and number of flowers produced by plants impact plant-pollinator interactions and seed set. We also ask how topography and the number of flowers interact with early snowmelt to affect pollination rates and the diversity of pollinating insects. Finally, we ask how seed set of Geum rossii is affected by pollinator visitation at different times of the season, under experimentally advanced snowmelt versus unmanipulated snowmelt, and with visitation by different insect taxa. In summer 2020, we found that plots with advanced phenology experienced peaks in pollinator visitation rates and pollinator diversity earlier than plots with unmanipulated snowmelt. We expect this to be because of the advanced floral phenology of certain key species in these plots. References: Forrester, C.C. (2021). Advancing, Using, and Teaching Climate Change Ecology Research. [Doctoral dissertation, University of Colorado, Boulder]. ProQuest Dissertations and Theses. 
    more » « less