skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Meta-Analysis of the Effects of Insect Pathogens: Implications for Plant Reproduction
Despite extensive work on both insect disease and plant reproduction, there is little research on the intersection of the two. Insect-infecting pathogens could disrupt the pollination process by affecting pollinator population density or traits. Pathogens may also infect insect herbivores and change herbivory, potentially altering resource allocation to plant reproduction. We conducted a meta-analysis to (1) summarize the literature on the effects of pathogens on insect pollinators and herbivores and (2) quantify the extent to which pathogens affect insect traits, with potential repercussions for plant reproduction. We found 39 articles that fit our criteria for inclusion, extracting 218 measures of insect traits for 21 different insect species exposed to 25 different pathogens. We detected a negative effect of pathogen exposure on insect traits, which varied by host function: pathogens had a significant negative effect on insects that were herbivores or carried multiple functions but not on insects that solely functioned as pollinators. Particular pathogen types were heavily studied in certain insect orders, with 7 of 11 viral pathogen studies conducted in Lepidoptera and 5 of 9 fungal pathogen studies conducted in Hymenoptera. Our results suggest that most studies have focused on a small set of host–pathogen pairs. To understand the implications for plant reproduction, future work is needed to directly measure the effects of pathogens on pollinator effectiveness.  more » « less
Award ID(s):
2010845
PAR ID:
10508235
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Pathogens
Volume:
12
Issue:
2
ISSN:
2076-0817
Page Range / eLocation ID:
347
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Global insect pollinator declines have prompted habitat restoration efforts, including pollinator-friendly gardening. Gardens can provide nectar and pollen for adult insects and offer reproductive resources, such as nesting sites and caterpillar host plants. We conducted a review and meta-analysis to examine how decisions made by gardeners on plant selection and garden maintenance influence pollinator survival, abundance, and diversity. We also considered characteristics of surrounding landscapes and the impacts of pollinator natural enemies. Our results indicated that pollinators responded positively to high plant species diversity, woody vegetation, garden size, and sun exposure and negatively to the separation of garden habitats from natural sites. Within-garden features more strongly influenced pollinators than surrounding landscape factors. Growing interest in gardening for pollinators highlights the need to better understand how gardens contribute to pollinator conservation and how some garden characteristics can enhance the attractiveness and usefulness of gardens to pollinators. Further studies examining pollinator reproduction, resource acquisition, and natural enemies in gardens and comparing gardens with other restoration efforts and to natural habitats are needed to increase the value of human-made habitats for pollinators. 
    more » « less
  2. Plant–herbivore and plant–pollinator interactions are both well-studied, but largely independent of each other. It has become increasingly recognized, however, that pollination and herbivory interact extensively in nature, with consequences for plant fitness. Here, we explore the idea that trade-offs in investment in insect flight and reproduction may be a mechanistic link between pollination and herbivory. We first provide a general background on trade-offs between flight and fecundity in insects. We then focus on Lepidoptera; larvae are generally herbivores while most adults are pollinators, making them ideal to study these links. Increased allocation of resources to flight, we argue, potentially increases a Lepidopteran insect pollinator’s efficiency, resulting in higher plant fitness. In contrast, allocation of resources to reproduction in the same insect species reduces plant fitness, because it leads to an increase in herbivore population size. We examine the sequence of resource pools available to herbivorous Lepidopteran larvae (maternally provided nutrients to the eggs, as well as leaf tissue), and to adults (nectar and nuptial gifts provided by the males to the females), which potentially are pollinators. Last, we discuss how subsequent acquisition and allocation of resources from these pools may alter flight–fecundity trade-offs, with concomitant effects both on pollinator performance and the performance of larval herbivores in the next generation. Allocation decisions at different times during ontogeny translate into costs of herbivory and/or benefits of pollination for plants, mechanistically linking herbivory and pollination. 
    more » « less
  3. Infectious disease is a major driver of biodiversity loss, but how disease threatens pollinator communities remains poorly understood. Here, we review the plant–pollinator–pathogen literature to identify mechanisms by which plant and pollinator traits and community composition influence pathogen transmission and assess consequences of transmission on plant and pollinator fitness. We find that plant and pollinator traits that increase floral contact can amplify transmission, but community-level factors such as plant and pollinator abundance are often correlated and can counteract one another. Although disease reduces pollinator fitness in some species, little research has assessed cascading effects on pollination, and taxonomic representation outside of honey bees and bumble bees remains poor. Major open challenges include (a) disentangling correlations between plant and pollinator abundance to understand how community composition impacts pathogen transmission and (b) distinguishing when pathogen transmission results in disease. Addressing these issues, as well as expanding taxonomic representation of pollinators, will deepen our understanding of how pathogens impact diverse pollinator communities. 
    more » « less
  4. Abstract BackgroundThe frequency and intensity of droughts are expected to increase under global change, driven by anthropogenic climate change and water diversion. Precipitation is expected to become more episodic under climate change, with longer and warmer dry spells, although some areas might become wetter. Diversion of freshwater from lakes and rivers and groundwater pumping for irrigation of agricultural fields are lowering water availability to wild plant populations, increasing the frequency and intensity of drought. Given the importance of seasonal changes and extremes in soil moisture to influence plant reproduction, and because the majority of plants are flowering plants and most of them depend on pollinators for seed production, this review focuses on the consequences of drought on different aspects of reproduction in animal-pollinated angiosperms, emphasizing interactions among drought, flowering and pollination. ScopeVisual and olfactory traits play crucial roles in attracting pollinators. Drought-induced floral changes can influence pollinator attraction and visitation, together with pollinator networks and flowering phenology, with subsequent effects on plant reproduction. Here, we review how drought influences these different aspects of plant reproduction. We identify knowledge gaps and highlight areas that would benefit from additional research. ConclusionsVisual and olfactory traits are affected by drought, but their phenotypic responses can vary with floral sex, plant sex, population and species. Ample phenotypic plasticity to drought exists for these traits, providing an ability for a rapid response to a change in drought frequency and intensity engendered by global change. The impact of these drought-induced changes in floral traits on pollinator attraction, pollen deposition and plant reproductive success does not show a clear pattern. Drought affects the structure of plant–pollinator networks and can modify plant phenology. The impact of drought on plant reproduction is not always negative, and we need to identify plant characteristics associated with these more positive responses. 
    more » « less
  5. Anthropogenic climate change is altering interactions among numerous species, including plants and pollinators. Plant-pollinator interactions, crucial for the persistence of most plant and many insect species, are threatened by climate change-driven phenological shifts. Phenological mismatches between plants and their pollinators may affect pollination services, and simulations indicated that these mismatches may reduce floral resources available to up to 50% of insect pollinator species. Although alpine plants rely heavily on vegetative reproduction, seedling recruitment and seed dispersal are likely to be important drivers of alpine community structure. Similarly, advanced flowering may expose plants to increased risk of frost damage and shifted soil moisture regimes; phenologically advanced plants will experience these environmental factors differently, which may alter their floral resource production. These effects may be dependent upon topography. Some species of alpine plants on the Niwot Ridge have displayed advanced phenology under treatments of advanced snowmelt (Forrester, 2021). However, little is understood about how these differences in distribution and phenology affect pollinator community composition and plant fecundity. Here we strive to examine how experimentally-induced changes in the timing of flowering and number of flowers produced by plants impact plant-pollinator interactions and seed set. We also ask how topography and the number of flowers interact with early snowmelt to affect pollination rates and the diversity of pollinating insects. Finally, we ask how seed set of Geum rossii is affected by pollinator visitation at different times of the season, under experimentally advanced snowmelt versus unmanipulated snowmelt, and with visitation by different insect taxa. In summer 2020, we found that plots with advanced phenology experienced peaks in pollinator visitation rates and pollinator diversity earlier than plots with unmanipulated snowmelt. We expect this to be because of the advanced floral phenology of certain key species in these plots. References: Forrester, C.C. (2021). Advancing, Using, and Teaching Climate Change Ecology Research. [Doctoral dissertation, University of Colorado, Boulder]. ProQuest Dissertations and Theses. 
    more » « less