skip to main content


Title: Differential Expression of Cell Wall Remodeling Genes Is Part of the Dynamic Phase-Specific Transcriptional Program of Conidial Germination of Trichoderma asperelloides
The nature of saprophytic and mycoparasitic hyphal growth of Trichoderma spp. has been studied extensively, yet its initiation via conidial germination in this genus is less well understood. Using near-synchronous germinating cultures of Trichoderma asperelloides, we followed the morphological progression from dormant conidia to initial polar growth to germling formation and to evidence for first branching. We found that the stage-specific transcriptional profile of T. asperelloides is one of the most dynamic described to date: transcript abundance of over 5000 genes—comprising approximately half of the annotated genome—was unremittingly reduced in the transition from dormancy to polar growth. Conversely, after the onset of germination, the transcript abundance of approximately a quarter of the genome was unremittingly elevated during the transition from elongation to initial branching. These changes are a testimony to the substantial developmental events that accompany germination. Bayesian network analysis identified several chitinase- and glucanase-encoding genes as active transcriptional hubs during germination. Furthermore, the expression of specific members of the chitin synthase and glucan elongase families was significantly increased during germination in the presence of Rhizoctonia solani—a known host of the mycoparasite—indicating that host recognition can occur during the early stages of mycoparasite development.  more » « less
Award ID(s):
1916137
NSF-PAR ID:
10350990
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Fungi
Volume:
8
Issue:
8
ISSN:
2309-608X
Page Range / eLocation ID:
854
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Autographa californica Multiple Nucleopolyhedrovirus (AcMNPV) is a baculovirus that causes systemic infections in many arthropod pests. The specific molecular processes underlying the biocidal activity of AcMNPV on its insect hosts are largely unknown. We describe the transcriptional responses in two major pests, Spodoptera frugiperda (fall armyworm) and Trichoplusia ni (cabbage looper), to determine the host–pathogen responses during systemic infection, concurrently with the viral response to the host. We assembled species-specific transcriptomes of the hemolymph to identify host transcriptional responses during systemic infection and assessed the viral transcript abundance in infected hemolymph from both species. We found transcriptional suppression of chitin metabolism and tracheal development in infected hosts. Synergistic transcriptional support was observed to suggest suppression of immune responses and induction of oxidative stress indicating disease progression in the host. The entire AcMNPV core genome was expressed in the infected host hemolymph with a proportional high abundance detected for viral transcripts associated with replication, structure, and movement. Interestingly, several of the host genes that were targeted by AcMNPV as revealed by our study are also targets of chemical insecticides currently used commercially to control arthropod pests. Our results reveal an extensive overlap between biological processes represented by transcriptional responses in both hosts, as well as convergence on highly abundant viral genes expressed in the two hosts, providing an overview of the host–pathogen transcriptomic landscape during systemic infection. 
    more » « less
  2. Abstract

    Auxin is a hormone that is required for hypocotyl elongation during seedling development. In response to auxin, rapid changes in transcript and protein abundance occur in hypocotyls, and some auxin responsive gene expression is linked to hypocotyl growth. To functionally validate proteomic studies, a reverse genetics screen was performed on mutants in auxin‐regulated proteins to identify novel regulators of plant growth. This uncovered a long hypocotyl mutant, which we calledslim shady, in an annotated insertion line inIMMUNOREGULATORY RNA‐BINDING PROTEIN(IRR). Overexpression of theIRRgene failed to rescue theslim shadyphenotype and characterization of a second T‐DNA allele of IRR found that it had a wild‐type (WT) hypocotyl length. Theslim shadymutant has an elevated expression of numerous genes associated with the brassinosteroid‐auxin‐phytochrome (BAP) regulatory module compared to WT, including transcription factors that regulate brassinosteroid, auxin, and phytochrome pathways. Additionally,slim shadyseedlings fail to exhibit a strong transcriptional response to auxin. Using whole genome sequence data and genetic complementation analysis with SALK_015201C, we determined that a novel single nucleotide polymorphism inPHYTOCHROME Bwas responsible for theslim shadyphenotype. This is predicted to induce a frameshift and premature stop codon at leucine 1125, within the histidine kinase‐related domain of the carboxy terminus of PHYB, which is required for phytochrome signaling and function. Genetic complementation analyses withphyb‐9confirmed thatslim shadyis a mutant allele ofPHYB. This study advances our understanding of the molecular mechanisms in seedling development, by furthering our understanding of how light signaling is linked to auxin‐dependent cell elongation. Furthermore, this study highlights the importance of confirming the genetic identity of research material before attributing phenotypes to known mutations sourced from T‐DNA stocks.

     
    more » « less
  3. Abstract

    Marine phytoplankton are a diverse group of photoautotrophic organisms and key mediators in the global carbon cycle. Phytoplankton physiology and biomass accumulation are closely tied to mixed layer depth, but the intracellular metabolic pathways activated in response to changes in mixed layer depth remain less explored. Here, metatranscriptomics was used to characterize the phytoplankton community response to a mixed layer shallowing (from 233 to 5 m) over the course of two days during the late spring in the Northwest Atlantic. Most phytoplankton genera downregulated core photosynthesis, carbon storage, and carbon fixation genes as the system transitioned from a deep to a shallow mixed layer and shifted towards catabolism of stored carbon supportive of rapid cell growth. In contrast, phytoplankton genera exhibited divergent transcriptional patterns for photosystem light harvesting complex genes during this transition. Active virus infection, taken as the ratio of virus to host transcripts, increased in the Bacillariophyta (diatom) phylum and decreased in the Chlorophyta (green algae) phylum upon mixed layer shallowing. A conceptual model is proposed to provide ecophysiological context for our findings, in which integrated light limitation and lower division rates during transient deep mixing are hypothesized to disrupt resource-driven, oscillating transcript levels related to photosynthesis, carbon fixation, and carbon storage. Our findings highlight shared and unique transcriptional response strategies within phytoplankton communities acclimating to the dynamic light environment associated with transient deep mixing and shallowing events during the annual North Atlantic bloom.

     
    more » « less
  4. Abstract

    In plants,N‐acylethanolamines (NAEs) are most abundant in desiccated seeds and their levels decline during germination and early seedling establishment. However, endogenous NAE levels rise in seedlings when ABA or environmental stress is applied, and this results in an inhibition of further seedling development. When the most abundant, polyunsaturated NAEs of linoleic acid (18:2) and linolenic acid (18:3) were exogenously applied, seedling development was affected in an organ‐specific manner. NAE 18:2 primarily affected primary root elongation and NAE 18:3 primarily affected cotyledon greening and expansion and overall seedling growth. The molecular components and signaling mechanisms involved in this pathway are not well understood. In addition, the bifurcating nature of this pathway provides a unique system in which to study the spatial aspects and interaction of these lipid‐specific and organ‐targeted signaling pathways. Using whole transcriptome sequencing (RNA‐seq) and differential expression analysis, we identified early (1–3 hr) transcriptional changes induced by the exogenous treatment of NAE 18:2 and NAE 18:3 in cotyledons, roots, and seedlings. These two treatments led to a significant enrichment in ABA‐response and chitin‐response genes in organs where the treatments led to changes in development. InArabidopsisseedlings, NAE 18:2 treatment led to the repression of genes involved in cell wall biogenesis and organization in roots and seedlings. In addition, cotyledons, roots, and seedlings treated with NAE 18:3 also showed a decrease in transcripts that encode proteins involved in growth processes. NAE 18:3 also led to changes in the abundance of transcripts involved in the modulation of chlorophyll biosynthesis and catabolism in cotyledons. Overall, NAE 18:2 and NAE 18:3 treatment led to lipid‐type and organ‐specific gene expression changes that include overlapping and non‐overlapping gene sets. These data will provide future, rich opportunities to examine the genetic pathways involved in transducing early signals into downstream physiological changes in seedling growth.

     
    more » « less
  5. null (Ed.)
    An increase in nutrient dose leads to proportional increases in crop biomass and agricultural yield. However, the molecular underpinnings of this nutrient dose–response are largely unknown. To investigate, we assayed changes in the Arabidopsis root transcriptome to different doses of nitrogen (N)—a key plant nutrient—as a function of time. By these means, we found that rate changes of genome-wide transcript levels in response to N-dose could be explained by a simple kinetic principle: the Michaelis–Menten (MM) model. Fitting the MM model allowed us to estimate the maximum rate of transcript change ( V max ), as well as the N-dose at which one-half of V max was achieved ( K m ) for 1,153 N-dose–responsive genes. Since transcription factors (TFs) can act in part as the catalytic agents that determine the rates of transcript change, we investigated their role in regulating N-dose–responsive MM-modeled genes. We found that altering the abundance of TGA1, an early N-responsive TF, perturbed the maximum rates of N-dose transcriptomic responses ( V max ), K m , as well as the rate of N-dose–responsive plant growth. We experimentally validated that MM-modeled N-dose–responsive genes included both direct and indirect TGA1 targets, using a root cell TF assay to detect TF binding and/or TF regulation genome-wide. Taken together, our results support a molecular mechanism of transcriptional control that allows an increase in N-dose to lead to a proportional change in the rate of genome-wide expression and plant growth. 
    more » « less