skip to main content


Title: Understanding Selectivity in Solute–Solute Separation: Definitions, Measurements, and Comparability
Award ID(s):
2017998
NSF-PAR ID:
10350999
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Environmental Science & Technology
Volume:
56
Issue:
4
ISSN:
0013-936X
Page Range / eLocation ID:
2605 to 2616
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The ability to locally tune solute–water interactions and thus control the hydrophilic/hydrophobic character of a solute is key to control molecular self-assembly and to develop new drugs and biocatalysts; it has been a holy grail in synthetic chemistry and biology. To date, the connection between (i) the hydrophobicity of a functional group; (ii) the local structure and thermodynamics of its hydration shell; and (iii) the relative influence of van der Waals (dispersion) and electrostatic interactions on hydration remains unclear. We investigate this connection using spectroscopic, classical simulation and ab initio methods by following the transition from hydrophile to hydrophobe induced by the step-wise fluorination of methyl groups. Along the transition, we find that water–solute hydrogen bonds are progressively transformed into dangling hydroxy groups. Each structure has a distinct thermodynamic, spectroscopic and quantum-mechanical signature connected to the associated local solute hydrophobicity and correlating with the relative contribution of electrostatics and dispersion to the solute–water interactions. 
    more » « less
  2. Abstract

    Most studies of land use effects on solute concentrations in streams have focused on smaller streams with watersheds dominated by a single land‐use type. Using land cover as a proxy for land use, the objective of this study was to determine whether the hydrologically‐driven response of solutes to land use in small streams could be scaled up to predict concentrations in larger receiving streams and rivers in the rural area of the Little Tennessee River basin. We measured concentrations of typically limiting nutrients (nitrogen, phosphorus), abundant anions (chloride, sulfate), and base cations in 17 small streams and four larger river sites. In the small streams, total solute concentration was strongly related to land cover ‐‐ highest in streams with developed watersheds, lowest in streams with forested watersheds, and streams with agricultural watersheds were in between. In general, the best predictor of solute concentrations in the small streams was forest land cover. We then predicted solute concentrations for the river sites based on the solute‐‐land cover relationships of the small streams using multiple linear regressions. Results were mixed ‐‐ some of the predicted river concentrations were close to measured values, others were greater or less than measured concentrations. In general, river concentrations did not scale with land cover‐solute relationships found in small tributaries. Measured values of nitrogen solutes in the river sites were greater than predicted, perhaps due to the presence of waste water treatment plants. We attributed other differences between measured and predicted river concentrations to the heterogeneous geochemistry of this mountainous region. The combined complexity of hydrology, geochemistry, and human land‐use of this mountainous region make it difficult to scale up from small streams to larger river basins.

     
    more » « less