skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Algorithm 1021: SPEX Left LU, Exactly Solving Sparse Linear Systems via a Sparse Left-looking Integer-preserving LU Factorization
SPEX Left LU is a software package for exactly solving unsymmetric sparse linear systems. As a component of the sparse exact (SPEX) software package, SPEX Left LU can be applied to any input matrix, A , whose entries are integral, rational, or decimal, and provides a solution to the system \( Ax = b \) , which is either exact or accurate to user-specified precision. SPEX Left LU preorders the matrix A with a user-specified fill-reducing ordering and computes a left-looking LU factorization with the special property that each operation used to compute the L and U matrices is integral. Notable additional applications of this package include benchmarking the stability and accuracy of state-of-the-art linear solvers and determining whether singular-to-double-precision matrices are indeed singular. Computationally, this article evaluates the impact of several novel pivoting schemes in exact arithmetic, benchmarks the exact iterative solvers within Linbox, and benchmarks the accuracy of MATLAB sparse backslash. Most importantly, it is shown that SPEX Left LU outperforms the exact iterative solvers in run time on easy instances and in stability as the iterative solver fails on a sizeable subset of the tested (both easy and hard) instances. The SPEX Left LU package is written in ANSI C, comes with a MATLAB interface, and is distributed via GitHub, as a component of the SPEX software package, and as a component of SuiteSparse.  more » « less
Award ID(s):
1835499
PAR ID:
10351055
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Transactions on Mathematical Software
Volume:
48
Issue:
2
ISSN:
0098-3500
Page Range / eLocation ID:
1 to 23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To meet the growing need for extended or exact precision solvers, an efficient framework based on Integer-Preserving Gaussian Elimination (IPGE) has been recently developed, which includes dense/sparse LU/Cholesky factorizations and dense LU/Cholesky factorization updates for column and/or row replacement. This paper discusses our ongoing work developing the sparse LU/Cholesky column/row-replacement update and the sparse rank-l update/downdate. We first present some basic background for the exact factorization framework based on IPGE. Then we give our proposed algorithms along with some implementation and data-structure details. Finally, we provide some experimental results showcasing the performance of our update algorithms. Specifically, we show that updating these exact factorizations can typically be 10x to 100x faster than (re-)factorizing the matrices from scratch. 
    more » « less
  2. Power engineers rely on computer-based simulation tools to assess grid performance and ensure security. At the core of these tools are solvers for sparse linear equations. When transformed into a bordered block-diagonal (BBD) structure, part of the sparse linear equation solving can be parallelized. This work focuses on using the Schur-complement-based method for LU factorization on BBD matrices, specifically, Jacobian matrices from large-scale systems. Our findings show that the natural ordering method outperforms the default ordering method in computational performance for each block of the BBD matrix. This observation is validated using synthetic 25k-bus and 70k-bus cases, showing a speedup of up to 38% when using natural ordering without permutation. Additionally, the impact of the number of partitions is studied, and the result shows that computational performance improves with more, smaller partitions in the BBD matrices. 
    more » « less
  3. Many scientific applications rely on sparse direct solvers for their numerical robustness. However, performance optimization for these solvers remains a challenging task, especially on GPUs. This is due to workloads of small dense matrices that are different in size. Matrix decompositions on such irregular workloads are rarely addressed on GPUs. This paper addresses irregular workloads of matrix computations on GPUs, and their application to accelerate sparse direct solvers. We design an interface for the basic matrix operations supporting problems of different sizes. The interface enables us to develop irrLU-GPU, an LU decomposition on matrices of different sizes. We demonstrate the impact of irrLU-GPU on sparse direct LU solvers using NVIDIA and AMD GPUs. Experimental results are shown for a sparse direct solver based on a multifrontal sparse LU decomposition applied to linear systems arising from the simulation, using finite element discretization on unstructured meshes, of a high-frequency indefinite Maxwell problem. 
    more » « less
  4. The generalized minimum residual method (GMRES) is a commonly used iterative Krylov solver for sparse, non-symmetric systems of linear equations. Like other iterative solvers, data movement dominates its run time. To improve this performance, we propose running GMRES in reduced precision with key operations remaining in full precision. Additionally, we provide theoretical results linking the convergence of finite precision GMRES with classical Gram-Schmidt with reorthogonalization (CGSR) and its infinite precision counterpart which helps justify the convergence of this method to double-precision accuracy. We tested the mixed-precision approach with a variety of matrices and preconditioners on a GPU-accelerated node. Excluding the incomplete LU factorization without fill in (ILU(0)) preconditioner, we achieved average speedups ranging from 8 to 61 percent relative to comparable double-precision implementations, with the simpler preconditioners achieving the higher speedups. 
    more » « less
  5. We develop techniques to convexify a set that is invariant under permutation and/or change of sign of variables and discuss applications of these results. First, we convexify the intersection of the unit ball of a permutation and sign-invariant norm with a cardinality constraint. This gives a nonlinear formulation for the feasible set of sparse principal component analysis (PCA) and an alternative proof of the K-support norm. Second, we characterize the convex hull of sets of matrices defined by constraining their singular values. As a consequence, we generalize an earlier result that characterizes the convex hull of rank-constrained matrices whose spectral norm is below a given threshold. Third, we derive convex and concave envelopes of various permutation-invariant nonlinear functions and their level sets over hypercubes, with congruent bounds on all variables. Finally, we develop new relaxations for the exterior product of sparse vectors. Using these relaxations for sparse PCA, we show that our relaxation closes 98% of the gap left by a classical semidefinite programming relaxation for instances where the covariance matrices are of dimension up to 50 × 50. 
    more » « less